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Given a flat, finite group scheme G finitely presented over a base scheme we introduce
the notion of ramified Galois cover of group G (or simply G-cover), which generalizes the
notion of G-torsor. We study the stack of G-covers, denoted with G-Cov, mainly in the
abelian case, precisely when G is a finite diagonalizable group scheme over Z. In this
case, we prove that G-Cov is connected, but it is irreducible or smooth only in few finitely
many cases. On the other hand, it contains a “special” irreducible component Z;, which
is the closure of BG and this reflects the deep connection we establish between G-Cov
and the equivariant Hilbert schemes. We introduce “parametrization” maps from smooth
stacks, whose objects are collections of invertible sheaves with additional data, to Zg
and we establish sufficient conditions for a G-cover in order to be obtained (uniquely)
through those constructions. Moreover, a toric description of the smooth locus of Z; is

provided.

1 Introduction

Let G be a flat, finite group scheme finitely presented over a base scheme (say over a
field, or, as in this paper, over Z). In this paper, we study G-Galois covers of very general

schemes. We define a (ramified) G-cover as a finite morphism f: X — Y with an action
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2 F. Tonini

of G on X such that fis G-invariant and f,Oyx is fppf-locally isomorphic to the regular
representation Oy[G] as OylGl-comodule. This definition is somehow the most natural:
it generalizes the notion of G-torsors and, under suitable hypothesis, coincides with
the usual definition of Galois cover when the group G is constant (see, e.g., [2, 6, 18]).
Moreover, as explained below, in the abelian case G-covers are tightly related to the
theory of equivariant Hilbert schemes (see, e.g., [1, 10, 16, 19]).

We call G-Cov the stack of G-covers and the aim of this article will be to describe
its structure, especially in the abelian diagonalizable case. Our first result is the follow-

ing theorem:

Theorem (2.2, 2.10). The stack G-Cov is algebraic and finitely presented over S. More-

over, BG, the stack of G-torsors, is an open substack of G-Cov. O

We denote by u, the diagonalizable group over Z associated to Z/nZ. In many
concrete problems, one is interested in a more direct and concrete description of a G-
cover f:X — Y. This is very simple and well known when G = u,: such a cover f is
given by an invertible sheaf £ on Y with a section of £®2. Similarly, when G = us, a usz-
cover f is given by a pair (£;, £,) of invertible sheaves on Y with maps £$? —> £, and
L3 — Ly (see [3, 86)).

In general, however, there is no comparable description of G-covers. Very little
is known when G is not abelian, beyond the cases G = S; with d=3, 4, 5: see [6] for the
case G = S; and [4, 5, 9, 15] for the non-Galois case.

Even in the abelian case, the situation becomes complicated very quickly when
the order of G grows. The paper that inspires our work is [18]; here, the author describes
G-covers X — Y when G is an abelian group, Y is a smooth variety over an algebraically
closed field of characteristic prime to |G| and X is normal, in terms of certain invertible
sheaves on Y, generalizing the description given above for G = u; and p3.

Here, we concentrate on the case when G is a finite diagonalizable group scheme
over Z; thus, G is isomorphic to a finite direct product of group schemes of the form g4
for d> 1. We consider the dual finite abelian group M =Hom(G, G,,) so that, by stan-
dard duality results (see [8]), G is the fppf sheaf of homomorphisms M — G,, and a
decomposition of M into a product of cyclic groups yields the decomposition of G into
a product of u4's.

In this case, we have an explicit description of a G-cover in terms of sequences

of invertible sheaves. Indeed a G-cover over Y is of the form X =Spec 4, where 4 is a
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coherent sheaf of algebras over Y with a decomposition

A= Lm s.t. Lo= 0Oy, Ly, invertible and L Ly S Ly in for any m, ne M.

meM

So a G-cover corresponds to a sequence of invertible sheaves (L) men With maps ¥y, p:
Lm ® Ly —> Ly satisfying certain rules and our principal aim will be to simplify the
data necessary to describe such covers. For instance, G-torsors correspond to sequences
where all the maps ¥, , are isomorphisms. Therefore, if G = u;, a G-torsor is simply
given by an invertible sheaf £ = £, and an isomorphism £& ~ 0.

When G = u; or G = 3 the description given above shows that the stack G-Cov
is smooth, irreducible, and very easy to describe. In the general case, its structure turns
out to be extremely intricate. For instance, as we will see, G-Cov is almost never irre-
ducible, but has a “special” irreducible component, called Z;, which is the scheme-
theoretically closure of BG. This parallels what happens in the theory of M-equivariant
Hilbert schemes (see [10, Remark 5.1]). It turns out that this theory and the theory
of G-covers are deeply connected: given an action of G on A", induced by elements
m=my, ..., m, € M, the equivariant Hilbert scheme M-Hilb A", which we will denote
by M-Hilb™ to underline the dependency on the sequence m, can be viewed as the func-
tor whose objects are G-covers with an equivariant closed immersion in A". The for-
getful map ¢ : M-Hilb™ — G-Cov is smooth and an atlas provided that m contains all
the elements in M — {0} (4.8). Moreover, © ~!(Z;) coincides with the main component of
M-Hilb™, first studied by Nakamura in [16].

We will prove the following results on the structure of G-Cov.

Theorem (4.13, 4. 17, 4.18, 4.20). When G is a finite diagonalizable group scheme over
Z, the stack G-Cov is

e flat and of finite type with geometrically connected fibers,
e smooth if and only if G >~ ua, pu3, p2 X wa,

o normal if G > g,

e reducible if |G| > 8 and G % (u2)%.

The above properties continue to hold if we replace G-Cov with M-Hilb™ if

M — {0} Cm. O

We do not know whether G-Cov is integral for G ~ us, ue, it7, (12)%. So G-Cov

is usually reducible, its structure is extremely complicated and we have little hope
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of getting to a real understanding of the components not containing BG. Therefore,
we will focus on the main irreducible component Z; of G-Cov. The main idea behind
this paper, inspired by the results in [18], is to try to decompose the multiplications
Vmn € Lmin ® L, @ L} as a tensor product of sections of other invertible sheaves. Fol-
lowing this idea, we will construct parametrization maps ng : Fg — Z¢ € G-Cov, where
Fe are “nice” stacks, for example smooth and irreducible, whose objects are those
decompositions.

This construction can be better understood locally, where a G-cover over
Y =SpecR is just X =Spec A, where A is an R-algebra with an R-basis {vy}men, vo=1
(Lm = Oyvy), so that the multiplications are elements ¥, , € R such that vy, v, = ¥m nVman.

Consider a€ R, a collection of natural numbers £ = (En n)mneny and set Yy, =
afm». The condition that the product structure on A=, Rvy, defined by the ¥, ,, yields
an associative, commutative R-algebra, that is, makes Spec A into a G-cover over Spec R,

translates in some additive relations on the numbers &, ,. Call K} the set of such col-

lections £. More generally, given £ =€, ...,£" ¢ KY, we can define a parametrization
grln n “"rrnn
R's(a,....a) — VYmn=a,""--ar

This is essentially the local behavior of the map 7¢ : F¢ — G-Cov. In the global case,
the elements a; will be sections of invertible sheaves.

From this point of view the natural questions are: given a G-cover over a scheme
Y when does there exist a lift to an object of F¢(Y)? Is this lift unique? How can we
choose the sequence £?

The key point is to give an interpretation to K (that also explains this notation).
Consider ZM with canonical basis (eyn)men and define vy, = ey + €, — emin € ZM/(ey). If
p:7ZM/(ey) — M is the map p(en) =m, the vy, , generate Ker p. Now call K, the sub-
monoid of ZM/(ey) generated by the v,, ,, K = Ker pits associated group and also consider
the torus 7 = Hom(ZM/(ey), G,,), which acts on Spec Z[K . ]. By construction, we have that
a collection of natural numbers (£, n)m nen belongs to K if and only if the association
Um.n —> Em.n defines an additive map K. —> N. Therefore, as the symbol suggests, we
can identify K} with Hom(K,, N), the dual monoid of K. Its elements will be called
rays. More generally, a monoid map ¢ : K. — (R, -), where R is a ring, yields a multi-
plication ¥, n = ¥ (Vm,n) o0 ,, s Rvm and therefore we obtain a map Spec Z[K ] — Zg.

We will prove that (see 4.6):

Theorem. We have Z; >~ [SpecZ[K,]/7] and BG >~ [Spec Z[K]/T]. O
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We introduce the following notation: given ¢ € N, we set 0 =1if ¢ =0and 0 =0
otherwise. Given £=¢&!,...,& e Ki we have defined a map ng : Fg — Z;. Note that if
y is a subsequence of £ then Fy is an open substack of F¢ and (¢)r, =Ty The lifting
problem for the maps ng clearly depends on the choice of the sequen;e £. Considering
larger £ allows us to parametrize more covers, but also makes uniqueness of the lifting

unlikely. In this direction, we have proved that:

Theorem (3.21). Let k be an algebraically closed field and suppose we have a collec-
tion £ whose rays generate the rational cone K ® Q. Then F¢ (k) — Z(k) is essentially
surjective. In other words, a G-cover of Spec k in the main component Z; has a multipli-

cation of the form v, ,= 0énn for some € € KY. O

On the other hand, small sequences £ can guarantee uniqueness but not exis-
tence. The solution we have found is to consider a particular class of rays, called
extremal, that have minimal nonempty support. Set n for the sequence of all extremal

rays (that is finite). Note that extremal rays generate KY ® Q. We prove that:

Theorem (3.46, 3.47). The smooth locus ZZ* of Z; is of the form [X; /7], where X; is a
smooth toric variety over Z (whose maximal torus is Spec Z[K]). Moreover, x, : F, — Z¢

induces an isomorphism of stacks
7 (5 > 25 -

Among the extremal rays there are special rays, called smooth, that can be
defined as extremal rays £ whose associated multiplication ¥, , = 0"~ yields a cover
in Zg". Set £ for the sequence of smooth extremal rays. It turns out that the theorem
above holds if we replace n with &.

If, given a scheme X, we denote by Pic X the category whose objects are invertible

sheaves on X and whose arrows are arbitrary maps of sheaves, we also have:

Theorem (3.51). Consider a 2-commutative diagram:

>

Fe

[

X*—— G-Cov
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where X and Y are schemes and £ is a sequence of elements of K. If P_icXLP_icY
is fully faithful (resp. an equivalence) the dashed lifting is unique (resp. exists and is

unique). O
In particular, the theorems above allow us to conclude that:

Theorem (3.47, 3.52). Let X be a locally noetherian and a locally factorial scheme.
A cover x € G-Cov(X) such that yxp € ZZ"(k(p)) for any pe X with codim,X <1 lifts
uniquely to F (X). O

An interesting problem is to describe all (smooth) extremal rays. This seems very
difficult and it is related to the problem of finding QQ-linearly independent sequences
among the v,, , € K. A natural way of obtaining extremal rays is trying to describe G-
covers with special properties. The first examples of them arise looking at covers with
normal total space. Indeed in [18] the authoris able to describe the multiplications yield-
ing regular G-covers of a discrete valuation ring. This description, using the language
introduced above, yields a sequence § = (£?)yca,, Of smooth extremal rays, where @y, is
the set of surjective maps M —> Z/dZ with d > 1. In this paper, we will define a stratifi-
cation of G-Cov by open substacks BG =Uy C U; C --- € Ujg-1 = G-Cov and we will prove
that there exists an explicitly given sequence £ of smooth extremal rays (defined in

Proposition 5.40) containing § such that:

Theorem (Theorems 4.40, 5.42). We have U, C Z3" and n¢ : Fg¢ — Z¢ induces isomor-
phisms of stacks
g (Up) —> Uy, 7y ' (Uy) = g (Uy) —> Un. O

The above theorem implies that M-HilbA? is smooth and irreducible (5.43). In
this way, we get an alternative proof of the result in [13] (later generalized in [14]) in the

particular case of equivariant Hilbert schemes.

Theorem (4.41, 5.45). Let X be a locally noetherian and a locally factorial scheme and
x € G-Cov(X). If xxp € U for any pe X with codim,X <1, then x lifts uniquely to F;(X).
If Xjkp) € Uz for any p e X with codim,X <1, then y lifts uniquely to F¢(X). O

Note that £ =§ if and only if G ~ (u2)! or G ~ (u3)! (Proposition 5.44). Finally we

prove:
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Theorem (Theorems 4.42, 5.55). Let X be a locally noetherian and locally factorial inte-
gral scheme with dim X > 1 and (char X, |[M|) =1 and Y/ X be a G-cover. If Y is regular in
codimension 1 it is normal and ¥/X comes from a unique object of F3(X). If Y is normal
crossing in codimension 1 (see Definition 5.47) then Y/ X comes from a unique object of

Fy(X), where § € y € £ is an explicitly given sequence. ]

The part concerning regular in codimension 1 covers is essentially a rewriting of
[18, Theorem 2.1 and Corollary 3.1] extended to locally noetherian and locally factorial
schemes, while the last part generalizes [2, Theorem 1.9].

Outline of the paper. We now briefly summarize how this paper is divided. In
Section 2, we will introduce the notion of G-covers, for a general group G, and prove
some facts about them, for example, the algebraicity of G-Cov. In Section 3 we will
introduce some general tools that will be applied in the study of G-Cov, when G is a finite
and diagonalizable group scheme. In this case, G-Cov and some of its substacks, like Z;
and BG, share a common structure, that is, they are all of the form X, =[Spec ZIT}1/7],
where T, is a finitely generated commutative monoid whose associated group is free of
finite rank, 7 is a torus over Z and ¢: T, —> Z" is an additive map, that induces the
action of 7 on SpecZ[T,]. Section 3 will be dedicated to the study of such stacks. As
we will see many facts about G-Cov are just applications of general results about such
stacks. For instance the existence of a special irreducible component Z; of X, as well as
the use of T, =Hom(T,, N) for the study of the smooth locus of Z; are properties that
can be stated in this setting. Section 4 and 5 are dedicated to the study of G-covers, in
the particular case where G is a finite and diagonalizable group scheme. In Section 4,
we will explain how G-Cov can be viewed as a stack of the form A}, and how it is related
to the equivariant Hilbert schemes. Then we will study the properties of connectedness,
irreducibility and smoothness for G-Cov. Finally, we will introduce the stratification
Up CU; C--- CUjg-1 = G-Cov and we will characterize the locus U;. In Section 5, we will
study the locus U, and G-covers whose total space is normal crossing in codimension 1.

All the other sections will be dedicated to the study of G-Cov when G is a finite
diagonalizable group with dual group M =Hom(G, Gy,).

Notation. A map of schemes f:X — Y will be called a cover if it is finite, flat
and of finite presentation or, equivalently, if it is affine and f.Ox is locally free of finite
rank. If X is a scheme and p € X we set codim,X = dim Oy , and we will denote by XV =
{pe X |codim,X =1} the set of codimension 1 points of X.

(N, G,,) for the diagonalizable

group associated to it, while if f: G — Sis an affine group scheme we set O5[G] = f.Og¢.

If N is an abelian group we set D(N) = Hom,,
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Moreover we will call a Oy[G]-comodule structure on a quasi-coherent sheaf F simply a
G-comodule structure.

If F is a quasi-coherent sheaf on a scheme X, the expression s € F will always
mean s € F(X) = H(X, F). Moreover, we will denote by V(s) the zero locus of s in X, that
is, the closed subscheme associated with the sheaf of ideals Ker(Oyx = F).

Given an element f=(a,...,a)€”Z" and invertible sheaves £;,...,L, on a

scheme we will use the notation

QL SymL=Sym(Ca..... L= DL
i gezr
Note also that, if for any i, we have £; = O, then there is a canonical isomorphism Qf ~0.

Given « € N, we will use the following convention:

1 =0,
0% =
0 a=>0.

We denote by (sets) the category of sets.
The abbreviation ‘fppf’ stands for ‘faithfully flat of finite presentation’.
Finally, if X is an algebraic stack, we denote by |X| its associated topological

space.

2 G-covers

In this section, we will fix a base scheme S and a flat and finite group scheme G finitely
presented over S. We will denote by + the regular representation of G, that is, A = Og[G]
with the Oy[G]-comodule structure u: A4 — 4 ® Os[G] induced by the multiplication
of G.

The aim of this section is to introduce the notion of a ramified Galois cover and

prove that the associated stack is algebraic.
Definition 2.1. Given a scheme T over S, a ramified Galois cover of group G, or simply

a G-cover, over it is a cover X —L T together with an action of Gr on it such that there

exists an fppf covering {U; — T} and isomorphisms of G-comodules

(fLOx)\u, = A,
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We will call G-Cov(T) the groupoid of G-covers over T, where the arrows are the

G-equivariant isomorphisms of schemes over T. O

The G-covers form a stack G-Cov over S. Moreover any G-torsor is a G-cover and

more precisely we have:
Proposition 2.2. BG is an open substack of G-Cov. |

Proof. Given a scheme U over S and a G-cover X =Spec B over U, X is a G-torsor if
and only if the map G x X — X x X is an isomorphism. This map is induced by a map
BB LN ® OlGyl and so the locus over which X is a G-torsor is given by the vanish-

ing of Coker h, which is an open subset. |

Definition 2.3. The main component Z; of G-Cov is the reduced closed substack
induced by the closure of BG in G-Cov. O

In order to prove that G-Cov is an algebraic stack we will present it as a quotient

stack by a smooth group scheme.

Notation 2.4. Let S be a scheme and F be a quasi-coherent sheaf over it. We denote by
W(F) :(Sch/S)°? — (sets) the functor

wWF U L sy ='W, FF).

Structures of G-comodule over F correspond to left actions of G on the functor W(F).

If H is another quasi-coherent sheaf over S with a structure of G-comodule,
there is an induced left action on the functor Hom(W(F), W(H)). We denote by
Hom®(W(F), W(H)) (resp. EﬂiGW(}—), Aut®W(F)) the subfunctor of Hom(W(F), W(H))
(resp. End W(F), Aut W(F)) given by the G-invariants elements, that are exactly the G-
equivariant morphisms. When F is locally free of finite rank, there is a natural isomor-
phism

W(Hom(F, H)) —> Hom(W(F), W(H))

that induces a G-comodule structure on the sheaf Hom(F,H). The subsheaf of
G-invariants, which we will denote by Hom®(F, H), coincides with the subsheaf
of Hom(F, H) of morphisms preserving the G-comodule structures. Finally, we set
End®(F) = HomC (F, F). O
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Remark 2.5. If F is a locally free sheaf of finite rank, then W(F) is smooth and
affine. O

Proposition 2.6. The functor

(Sch/S)°P X (sets)
- algebra structures on Ar
in the category of G-comodules
is an affine scheme finitely presented over S. 0

Proof. Let T be a scheme over S. An element of X;(T) is given by maps
Ar @ Ar —> Az, Or —> Ar

for which 4 becomes a sheaf of algebras with multiplication m and identity e(1) and
such that u is a homomorphism of algebras over Or. In particular, e has to be an isomor-
phism onto A% = Or. Therefore, we have an inclusion X; € Hom(W(A ® #4), W(A)) x G,
which turns out to be a closed immersion, since locally, after we choose a basis of 4, the

above conditions translate in the vanishing of certain polynomials. [
Proposition 2.7. Aut®W(4) is a smooth group scheme finitely presented over S. O
Proof. If T is an S-scheme, the morphisms

gogp 10,
Or[G]Y —— End® (4 ® Or),
fr— (f®id) o A,

where A and ¢ are, respectively, the co-multiplication and the co-unit of Or[G], are

inverses of each other. Since
W(OslG1Y) ~ Hom(W(Os[Gl), W(Os)),

we obtain an isomorphism End®W(#4) ~ W(Os[G]Y), so that End® W(4) and its open sub-

scheme Aut®W(s4) are smooth and finitely presented over S. |
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Remark 2.8. Aut®W(s4) acts on X; in the following way. Given a scheme T over S, a
G-equivariant automorphism f: A7 —> Ar and (m, e) € Xg(T) we can set f(m, e) for the
unique structure of sheaf of algebras on A7 such that f: (A7, m,e) — (A7, f(m,e)) is

an isomorphism of Or-algebras. ]
Proposition 2.9. The natural map Xg —~, G-Covis an Aut®W(4)-torsor, that is,
G-Cov >~ [Xg/Aut® W(A)]. O

Proof. Consider a cartesian diagram

P— Xg

L

U —f> G-Cov

where U is a scheme and f:Y— U is a G-cover. We want to prove that P is an
Aut®W(A) torsor over U and that the map P —> X is equivariant. Since 7 is an fppf
epimorphism, we can assume that f comes from X, that is, f.Oy = Ay with multiplica-

tion m and neutral element e. It is now easy to prove that

AutSW(Ay) — P,
ht+—— h(m,e)

is a bijection and that all the other claims hold. ]
Using the above propositions, we can conclude that:
Theorem 2.10. The stack G-Cov is algebraic and finitely presented over S. O

3 The Stack &}

In the following sections, we will study the stack G-Cov when G =D(M), the diagonal-
izable group of a finite abelian group M. The structure of this stack and of some of its
substacks is somehow special and in this section we will provide general constructions

and properties that will be used later. To a monoid map T N 7", we will associate a
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stack X; whose objects are sequences of invertible sheaves with additional data and
we will study particular “parametrization” of these objects, defined by a map of stacks
Fe Y Xy, where F¢ will be a “nice” stack, for instance, smooth.

In this section, we will consider given a commutative monoid T, together to a

monoid map ¢: T, — 7.
Definition 3.1. We define the stack X over Z as follows.

e Objects. An object over a scheme S is a pair (£, a) where:

- L=/L,,...,L, are invertible sheaves on S;

— T, % Sym*£ is an additive map such that a(¢) € £*® for any t € T,.

e Arrows. An isomorphism (£, a) 2 (L, d) of objects over S is given by a

sequence o = o7y, ..., or of isomorphisms o; : £; = L} such that
¢ () —d f 0
a®Y(at)=a(t) foranyteT,.

Example 3.1. Let fi,..., fs.91,....9:€Z" and consider the stack XLQ of invertible
sheaves L4, ..., £, with maps O—>§ff and O—iégf. If T, =NSxZ'and ¢: T, — Z~
is the map given by the matrix (fi|---|fslg1l---1g) then X4 = X;. O

Notation 3.2. We set
ZIT ) = Zixilser, | (XX — Xpr0s X0 — 1)

and OglT 1 =ZIT,] ®z Os. The scheme Spec Og[T,] over S represents the functor that
associates to any scheme U/S the set of additive maps T, — (Oy, -), where - denotes
the multiplication on Oy. The group D(Z") acts on SpecZ[T,] by the graduation
deg x = ¢ (). O

Proposition 3.3. Set X =SpecZI[T,]. The choice £; = Ox and

£eo =, 0,

a(t) « > Xt

induces a smooth epimorphism X — X, such that X, >~ [X/D(Z")]. In particular, X} is an
algebraic stack. O

ST0Z ‘62 A%enuer UOesId Ip PMS 116p eISIBAIIN T8 /BI0SeUINO[PIOXO UIWY//:dHY WO papeojumoq


http://imrn.oxfordjournals.org/

Stacks of Ramified Covers Under Diagonalizable Group Schemes 13

Proof. It is enough to note that an object of [X/D(Z")I(U) is given by invertible sheaves
Ly, ..., L, with a D(Z")-equivariant map Spec Sym*£ — Spec Z[T,] which exactly corre-
sponds to an additive map T} — Sym*L as in the definition of A}. It is easy to check
that the map X — [X/D(Z")] — X, is the one defined in the statement. u

Remark 3.4. Given a map U X = Spec ZI[T,], that is, a monoid map T, -2 Oy, the

induced object U —> X —> X, is the pair (£, @), where £; = Oy and for any t e T}

Oy —=— [9®

a(t) ——— a(t)

We will denote by a also the object (£, @) € X, (U).

Given two elements a, b: Ty — Oy € A, (U), we have

Isox,w)(a b)={o1,...,0, € Of | a®*Pa(t) =bt) Vie Ty}

Lemma 3.5. Consider a commutative diagram:

where T, and T’, are commutative monoids and ¢, ¥, h, and g are additive maps. Then

we have a 2-commutative diagram:

Spec ZIT,] — " SpecZIT,]
X, 4 X,

(L, T = Sym’L) - (M, T, = Sym* M) 3.1
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where, fori=1,...,r, M; = £9% and b is the unique map such that

T, _ b Sym*M MV~ £9v
i

g | 1A

T, ———— Sym*L LIV O

Proof. An easy computation shows that there is a canonical isomorphism M" ~ £9% for
all v e Z" and so b(t) corresponds under this isomorphism to a(h(t)) € LY *® = £I¢® ~
M?®_ So the functor A is well defined and we only have to check the commutativity of
the second diagram in the statement. The map Spec Z[T’, ] — Spec Z[T ] — X is given

by trivial invertible sheaves and the additive map

T, — ZIT %, . . %] — ZIT I, - % s

t— X0 Xy x?®

Instead the map SpecZ[T' ] — Xy —> A} is given by trivial invertible sheaves and the

map b that makes the following diagram commutative:

T, — 2 L ZTx, .. %] X

| |

a

T, —————— ZITly, .-, ¥l 2@

£ X PO

Since xpx? is sent to Xy PP D) = x5 Y ") = a(h(t)) we find again b(t) = xux*?. N

Remark 3.6. The functor Xy — A} sends an element a: T| — Oy € &} (U) to the ele-
ment ao he X,(U). Moreover, taking into account the description given in 3.4, if a, b:

T, — Oy € Xy (U), we have

Isoy(a,b) —— Isoy(aoh,boh)

[ e —— gg(el)’ e, gg(er) D
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3.1 The main irreducible component Zy of X

Notation 3.7. A monoid will be called integral if it satisfies the cancellation law, that
is,

Ya,b,c, a+b=a+c=b=c.

Let T, be a monoid. There exists, up to a unique isomorphism, a group T (resp. integral
monoid T}rnt) such that any monoid map T, —> S;, where S, is a group (resp. integral
monoid), factors uniquely through T (resp. T}rnt). We call it the associated group (resp.
associated integral monoid) of T,. Note that if T is the associated group of T,, then
Im(T; — T) can be chosen as the associated integral monoid of T. We will continue to
denote by T the associated group of T, and we set ij =Im(T, —> T) C T. In particular,
(T, =T.

From now on T, will be a finitely generated monoid whose associated group is a
free Z-module of finite rank. In order to simplify notation, we will often write ¢ : T —>
Z", meaning the extension of ¢ : Ty — Z” to T. Anyway, the stack &}, will always be the
stack X7, _,7- and when we will have to consider the stack Xr_, -, we will always specify

a different symbol for the induced map T — Z. O

Remark 3.8. If D is a domain, then Spec D[T] is an open subscheme of Spec DIT,],
while Spec D[Tint] is one of its irreducible components. In particular, we have the

following: O

Proposition 3.9. Let é:T —> 7" be the extension of ¢ and set ¢ =¢;‘Tint. Then B, =
X; —> X is an open immersion, while Z, = Xy —> A, is a closed one. Moreover, Z, is
the reduced closed stack associated to the closure of By, it is an irreducible component
of X, and

By ~[SpecZIT]/D(Z")] and Z,~[Spec ZIT™]/D(Z"). 0

Definition 3.10. With notation above, we will call B, and Z,4 the principal open sub-

stack and the main irreducible component of X, respectively. O
Notation 3.11. We set

T.;Y =Hom(T;,N)={£ € Homgoups (T, Z) | E(Ty) SN}

ST0Z ‘62 A%enuer UOesId Ip PMS 116p eISIBAIIN T8 /BI0SeUINO[PIOXO UIWY//:dHY WO papeojumoq


http://imrn.oxfordjournals.org/

16 F. Tonini

We will call it the dual monoid of T, and we will call its elements the rays for T,.
Note that T\ = Timv. Given£=¢&',...,&¢ T, we will denote by £ also the induced map
T — Z°. Moreover we set

Supp& ={ve T, |3i&(v)>0}.

Finally, note that the dual monoid of a group is always 0. Therefore, when H is an abelian

group, the dual HY of H will always be the dual as Z-module. O
Definition 3.12. Given a sequence E=E&!,...,E5¢ T, set
NGT — S T5a7

€,0+———1(0
0,0 (E®), =)

where ey, ..., e is the canonical basis of Z°. We will call F¢ = A, . O

Remark 3.13. An object of F¢ over a scheme U is given by a sequence (£, M, z, 1) where

o L=L1,...,L, and M= (Mg)gcs = M, ..., M, are invertible sheaves on U;
o z=(2Zg)gec =21, ..., 2 are sections z € M;;

e foranyteT, A(t) =A; is an isomorphism £2® —> ME® additive in ¢.

An isomorphism (£, M,z 1) — (L', M',Z,}/) is a pair (o, 7) where w=wy,...,0,, 7=
71, ..., Ts are sequences of isomorphisms £; —> £}, M N M; such that 7;(zj) =2, and

for any t € T we have a commutative diagram:

£o0 M\ E@

th) l J{ Ld’(tJ
’

200 L g

An object over U coming from the atlas Spec Z[N® @ T1is a pair (z, A) wherez=2z, ...,z €

Oy and A: T — O, is a group homomorphism. Given (z, 1), (Z, 1) € F¢(U), we have

Isoy((z, A), (Z, 1) = {(w, T) € (0F) x (0)° | tizi = Z, TEON(1) = ? PN (). O
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Definition 3.14. Given a sequence £ =&, ..., £ of elements of T, we define the map
me: Fg—> Xy

induced by the commutative diagram

i T+ ¢ Zr
E®),—1) NS T - 75 7" 0

Remark 3.15. We can describe the functor n¢ explicitly. So suppose that we have an
object x =(£, M, z, 1) € Fg(U). We have ng(x) = (L, a) € X4(U) where a is given, for any
teT,, by

£o0 M o

aty - 250

Moreover, if (@, 7) is an isomorphism in Fg, then 7¢ (@, 1) = .
If (z, 1) € F¢(U) then a=mg(z, 1) € Xy(U) is given by

T,

Oy

N £l s
t—— E0p, =24 D 0, O

Remark 3.16. If £ = (£Y);; is a sequence of elements of T\, J C I, and we set § = (gj)je_]

we can define a map over X as

P

Fs £
L Mzr) (LM, 2,0

1

Fe M= M; ield, ” z i€lJ,
O ¢l 1 Q¢

In fact p comes from the monoid map T & N! — T & N’ induced by the projection.
Moreover, p is an open immersion, whose image is the open substack of ¢ of objects
(L, M, z, 1) such that z generates M; for all i ¢ J. We will often consider F; as an open
substack of F¢. O
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Definition 3.17. Given a sequence £ =&, ..., £ of elements of T, we define
TE=T% =(eT|ViE @) >0}

We also consider the case s =0, so that Tf = T. If we denote by q3 : Tf — 77 the extension
of ¢, we also define Xf = Zf: X(Z,. O

Remark 3.18. Assume that we have a monoid map Ty — T (compatible with ¢ and ¢')
inducing an isomorphism on the associated groups. If E=£*,...,&5¢ T;V C T/, then we

have a 2-commutative diagram

e —— Fe

]

Xy ——— X,

where 77 is the stack obtained from T} with respect to £. O
Proposition 3.19. The map n¢ : F¢ —> & has a natural factorization
fg—)Xf—>Z¢—>X¢. O

Proof. The factorization follows from Remark 3.18 taking monoid maps T, —

int £
™ — Tr. |

Remark 3.20. This shows that g has image in Z,.We will call with the same symbol

m¢ the factorization Fg — Z. O

We now want to show how the rays of T, can be used to describe the objects of

Z, over a field. Using notation from Remark 3.4, the result is as follows:

Theorem 3.21. Let k be a field and T, ke Xy (k). Then ac Z,4(k) if and only if there

exists a group homomorphism A : T — k* and € € T such that

a(t) = 0@
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In particular, if E =€, ..., £ generate T} ® Q then n¢ : ]—'Q(l_c) — Z¢(l_c) is essentially sur-
jective and so 7¢ : |Fg| —> | 24| is surjective. Finally, if the map ¢ : T — 77 is injective,

we have a one-to-one correspondence

2,(R)/ ~ —— {XC T, | X=Supp& for £ € T)')
al » {a=0}

In particular, | Z4| = (2,(Q)/ ) || (L primes p(Z¢(I_F‘p)/ ~)]. O

Before proving this theorem, we need some preliminary results that will also be

useful later.

Definition 3.22. If T, is integral, £ € T\ and k is a field, we define

pe= P kx CHTLI

veTy,E(v)>0

If pe SpeckiT,], we set p*" =P, ., kx. O
The suffix (—)°™ here stays for “homogeneous”, since, when T, =N" and k[T;] =

klxi, ..., %], p°™ is an homogeneous ideal, actually a monomial ideal.

Lemma 3.23. Let kbe a field and assume that T, is integral. Then:

(1) if £e T, pe is prime and kl{v € T, | £(v) =0}] — kIT] — KIT\]/ ps is an iso-
morphism.

(2) If peSpeckiT,] then p°™" = p¢ for some £ € T. O

Proof. (1) Itis obvious.
(2) p>™ is a prime thanks to [11, Proposition 1.7.12] and therefore p°™ = p¢ for
some & € T, thanks to [17, Corollary 2.2.4]. [ |

Remark 3.24. If kis an algebraically closed field, ¢ : T — Z7 is injective and a, b € X4 (k)
differ by a torsor, that is, there exists A: T, — k* such that a=2b, then a~b in Z4(k).
Indeed A extends to a map T —> k* and, since k is algebraically closed, it extends again

to amap A:Z" — k*. O
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Proof of Theorem 3.21. We can assume that k is algebraically closed and that T, is
integral, since if @ has an expression as in the statement then clearly a € Z,(k). Consider
p=Ker(kIT.] = k). Thanks to Lemma 3.23, we can write p°™ = ps for some & € T). Set
T, ={veTy|Ew)=0} and T'=(T})z. Since a maps T, to k*, there exists an extension
A:T'— k*. On the other hand, since k is algebraically closed, the inclusion 7" — T

yields a surjection

Hom(T, k) — Hom(T', k*)

and so we can extend again to an element A : T — k*. Since one has Supp £ = {a= 0} by
construction, it is easy to check that a(t) = 1,0°® for all te T,.

Now consider the last part of the statement and so assume ¢: T —> Z' injec-
tive. The description of the objects ae€ Z,(k) given above shows that the map y is
well defined. Moreover, it is surjective because given £ € T\, one can always define
a(t) = 0. For the injectivity, let a, b € Z,(k) be such that {a= 0} = {b=0}. We can write
a(t) = 205D b(t) = u;0°®, where A, u: T — k*, so that a and b differ by a torsor and are
therefore isomorphic thanks to Remark 3.24. Finally, since any point of |Z,| comes from

an object of Z4(Z), we also have the last equality. |

In some cases, the description of the objects of F¢ can be simplified, regardless
of £, in the sense that there exist a stack of reduced data ]-Eed, whose objects can be
described by less data, and an isomorphism Fg >~ ]—'Ed. This kind of simplification could
be very useful when we have to deal with an explicit map of monoids ¢ : T, — Z", as we
will see in Proposition 4.7. The idea is that in order to define an object (£, M, z, 1) € F¢,
we do not really need all the invertible sheaves £, ..., £,, because they are uniquely

determined by a subset of them and the other data.

Definition 3.25. Assume T N 7" injective. Let V CZ" be a submodule with a given
basis v;,...,vy and 0:Z"— V be a map such that (id —o¢)Z"C T (or equivalently
7 =7 oo where 7 is the projection Z" — Coker¢). Define W= ((id — o) V,0 T) C V. Given

E=¢Y,...,E e TY consider the map

Ve
WeN — 790 7
(w, 2) | C(—w, E(w) + 2)

We define ]—"gd‘“ = Xy, and we call it the stack of reduced data of £. O
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Lemma 3.26. Consider a submodule U CZP?, a map £:U — 7! and 7 :ZP —> ZP such

that (id — r)ZP C U. Consider the commutative diagram:

Tdhid
(u, 2) UeN — — UaN

I s
—ulw+z 7P 7 7P & 7!
w2 —— tu,E(u—tu) + 2)

Then the induced map ¢ : X, — X}, is isomorphic to idyx, . O

Proof. Let xi,...,Xxp, be a Z-basis of Z? with a,,...,ax €N such that a1 x;, ..., qx is a
Z-basis of U. We want to define a natural isomorphism idyx, -5 . First note that it
is enough to define it on the objects of X, coming from the atlas SpecZ[U & N!] and
prove the naturality between such objects on a fixed scheme T and for the restrictions.
An object coming from the atlas is of the form (1, z), where A : U — Oy, is an additive
map and z=2z, ..., z € Or. Moreover, (%, z) = (, 2), where . =1 o 7. Let n € D(ZP)(T) the
only elements such that n* =A(x —tx) fori=1,..., p. These objects are well defined
since (id — 7)Z? C U. We claim that wr  » = (1, 1) is an isomorphism (%, z) — ¢(2, 2) and

define a natural transformation. It is an isomorphism since 1z; = z; and the condition
N U1EWN(u) =A(rw) YueU

holds by construction checking it on the basis a;xi, ..., @x; of U (see Remark 3.4). It
is also easy to check that this isomorphisms commute with the change of basis. So it
remains to prove that, if (o, 1) is an isomorphism (%, z) — (1', Z) then we have a com-

mutative diagram:

g,

1)
Gz —— V. 2)

WT (1,2) J le.().’.g)
@(a. 1)

e, 2) ———— (), 2)

E(x

We have ¢(o, p) = (3. i) with i =p and 6% =™ u£%~% (see Remark 3.6). So it is easy

to check that the commutativity in the second member holds. For the first, the condition
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is

|

n=rn'c, which is equivalent to

(Gn)™ =g ™ pst

TN - Tx) = (') =4 (% — tx)a

E(x;

and to o~ TR U EETTR) (x — 1x) =)/ (x; — 1X;) for any i. But, since (o, u) is an isomor-

phism (%, 2) — (', Z), the condition

o EYN(W) =N () YueU

has to be satisfied. [ |
Proposition 3.27. Assume T LN 7' injective and let £=¢&! ..., e T and
o,V,vi,...,v4 be as in Definition 3.25. For appropriate choices of isomorphisms A

given by Lemma 3.5, the functors

rs Mv Z, )\') 1 (M’ Mﬂ gv )\')
]:‘5 ]_-;ed.a

(‘C’ M’ Z’ )\') f ’ ((évi)izl q M? zv)\'|W)

.....

are inverses of each other. O

Proof. Consider the commutative diagrams:

odid
WeN < = TGN TeN — 2% L weNs
VIJ J¢£ ¢’£J JV/
ALY/ — P e — 79978

(X’ Y) B (GX’ §(X_ UX) + Y)

red,o

They induce functors A:Fg — F. " and A :]-";ed‘” — Fg, respectively, that behave as

the functors of the statement thanks to the description given in Lemma 3.5. Finally,

applying Lemma 3.26, we obtain that A o A~id and A o A ~id. [
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3.2 Extremal rays and smooth sequences

We continue to use notation from Notation 3.7. We have seen that given a collection £ =
&', ..., & € TY we can associate to it a stack F¢ and a “parametrization” map Fg —> Xj.
The stack F¢ could be “too big” if we do not make an appropriate choice of the collection
£. This happens for example if the rays in £ are not distinct or, more generally, if a ray in
& belongs to the submonoid generated by the other rays in £. Thus, we want to restrict

our attention to a special class of rays, called extremal and to special sequences of them.

Definition 3.28. An extremal ray for T, is an element £ € T’ such that

e & has minimal nonempty support, that is, the set Supp £ C T, is minimal in
(XS T, | X+#0and X =Supps for some § € T,'}, ©).
e ¢ isnormalized, that is, £: T — Z is surjective. O

Lemma 3.29. Assume that T, is an integral monoid and let vy, ..., v; be a system of gen-
erators of T,. Then the extremal rays are the normalized £ € T} — {0} such that Ker £ con-
tains rk T — 1 Q-independent vectors among the vy, ..., v;. In particular, they are finitely

many and they generate Q. T . O

Proof. Denote by £2 C T, the set of elements defined in the statement. From [7, Section
1.2, (9)], it follows that Q.2 =Q, T). If £ € 2 then it is an extremal ray. Indeed,

@+ Supp& CSuppé =L Q. s.t. &’ =AE => Supp & =Suppé.
Conversely, let £ be an extremal ray and consider an expression

&= Z)\B(S with As € on.

sef2

There must exists § such that A5 #0. So

Suppd S Supp & = Suppd=Suppl = Iu Qi s.t. E=ud =& =4.
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Corollary 3.30. For an extremal ray £ and £’ € TY. we have

Supp & =Supp€ <= e Q) s.t. &' =1 & TreN . s.t. & =AE. O

Definition 3.31. An element v € T, is said indecomposable if whenever v =v" + v” with

v/, v” € Ty it follows that v =0 or v’/ =0. O

Proposition 3.32. T\ has a unique minimal system of generators composed by the inde-

composable elements. Moreover, any extremal ray is indecomposable. O
Proof. The first claim of the statement follows from [17, Proposition 2.1.2] since T
is sharp, that is, it does not contain invertible elements. For the second, consider an

extremal ray £ and assume £ =&+ £”. We have

Supp &, Supp &’ CSuppE =& =1E,E"=puE with r, ueN

andso =L+ —=r4+u=1—=1=00ru=0—=E&=00r&"=0. |
Definition 3.33. A smooth sequence for T, is a sequence £=¢1, ..., &5 € T/ for which
there exist elements vy, ..., vs in the associated integral monoid T}rm of T, such that

Ti™ N Ker £ generates Ker§ and &'(vj)=46;; foralli, j.

We will also say that a ray £eT—{0} is smooth if there exists a
smooth sequence as above such that £e(£!,...,E%N or, equivalently, such that
Supp £ C Suppé. O

Remark 3.34. If T, is integral and £2 is a system of generators, one can always assume
that v; € £2. Moreover, we also have that £2 N Ker £ generates Ker €.

Finally, the equivalence in the last sentence of Definition 3.33 follows from the
fact that, since Ker £ is generated by elements in Ti™, then the inclusion of the supports
implies that Exerg = 0 and therefore £ =), £(v)E". O

Lemma 3.35. Let £=E&', ..., £ be a smooth sequence. Then

Tf:KeréEB (vi,..., v )N ST wherevy,...,v-€ Tj_nt, Ei(vj) =06 ;.
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Moreover, if zi, ..., z; € TI™ generate T'™, then Z[Tf] = Z[Tint]l_[s(z.)ﬂ x, SO that Spec Z[Tf]
(Xf) is a smooth open subscheme (substack) of Spec Z[Tf“] (Z4). |

Proof. We have T=Ker& @ (vi,...,v)z and clearly Ker& @ (vi,...,vg)nC Tf. Con-

. E .
versely, if v € T-, we can write

v:z—i—ZSi(v)vi with zeKer£ = veKer& @ (v1, ..., vg)n.

1

In particular, Spec Z[Tf] ~ A7 x Dz(Ker&) and so both Spec Z[Tf] and Xf are smooth.
Now let
I={i|&(z)=0} and S,=(T™ —zforiel)CT.

We need to prove that S, = Tf. Clearly, we have the inclusion C. For the reverse inclusion,
it is enough to prove that —Ker £ N TI"* C S,. But if v € Ker £ N T™ then

N

v:Zajzj=Zajzj=>—veS+. -
j=1 jeI

Remark 3.36. Any subsequence of a smooth sequence is smooth too. Indeed, let § =

£, ..., &S be a subsequence of a smooth sequence £=¢1,..., &7, with r > s. We have to

prove that (Keré N T}rnt)z =Ker§é. Take v € Kerd. So

.
v — Z E(v)vj e KerE = (Ker £ N Tz C (Kerd N Ti™)z = v € (Ker§ N T™).
Jj=s+1

O

Proposition 3.37. Let £ € T,. Then £ is a smooth extremal ray if and only if £ is a
smooth sequence composed of one element, that is, Ker& N Tint generates Ker £ and there
exists v € T, such that £(v) =1.

In particular, any element of a smooth sequence is a smooth extremal ray. O

Proof. We can assume that T, is integral. If £ is smooth and extremal, then there exists
a smooth sequence &£!,...,£9 such that £ e (€1, ..., £9)y. Since £ is indecomposable, it
follows that £ = &' for some i. Conversely, assume that £ is a smooth sequence. So it is
smooth by definition and it is normalized since £(v) =1 for some v. Finally, an inclu-
sion Supp 6 € Supp € for § € T, means that § € (€)n, as remarked in Remark 3.34, and so

Supp § =¥ or Supp § =Supp €. |
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We conclude with a lemma that will be useful later.

Lemma 3.38. Let T, and T| be integral monoids and h: T — T’ be a homomorphism
such that h(T,) =T| and Kerh= (KerhN T, ). IfE=EL ..., &8 € Tjrv, then

£ smooth sequence for T, <= £ o h smooth sequence for T,. O

Proof. Clearly, there exist v; € T| such that Ei(vj) =4; ; if and only if there exist w; € T}

such that £ o h(w;) = §; ;. On the other hand, we have a surjective morphism
Ker£oh/(Ker€ o hN Ty )z — KerE/(KerEN T ).
In order to conclude it is enough to prove that this map is injective. So let v € T such that

h(v)=) a;z; witha;€Z, z; €T}, E(z)=0.
J

Since h(T,)=T,, there exists y; € Ty such that h(y;) =z;. In particular, y= Zj a;jy; €
(Ker£ o hN T, )7 and

v—yeKerh=(KerhNT,)C(KerohNT,). |

3.3 The smooth locus Z;m of the main component Z

Lemma 3.39. Let £=¢1,...,£9 be a smooth sequence and x be a finite sequence of
elements of T\Y. Assume that all the elements of x are distinct, each &' is an element of

x and that for any § in x, we have
se(&h, ... EYy=3Tis=E"

As usual denote by 7, the map F, — X};. Then we have an equivalence

Sl pEy T E

.7:§:7TX1(X¢T)—>X(;. O
Proof. Set x=&',...,&% 9, ..., 7 =&, n. We first prove that n;l(Xf) C F¢. Since they
are open substacks, we can check this over an algebraically closed field k. Let (z, 1) €
nx‘l (Xf) sothata=7,(z, A) = Z£/A: T, — kby Remark 3.15. We have to prove that z,; #0.
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Assume by contradiction that z,, = 0. Since we can write a=b0" and since a extends to
Tf so that a(t) # 0 if t € Ty NKer &, we have that n; is 0 on T, N Ker&. In particular,

Suppn’ CSuppE =’ e (£}, ..., Ny = Tin/ =&

Thanks to Remark 3.16, it is enough to prove that if £ is a smooth sequence such
that T, = Tf then r¢ is an isomorphism. By Lemma 3.35 we can write Ty = W @& N?, where
W is a free Z-module such that §|W =0 and, if we denote by vy, ..., vq the canonical base
of N9, £7(v;) = 8; ;. Consider the diagram:

Nl T T,
I Il
Nl WwWe 74 W o N4
‘ | y(e) =v;, yw=—idw, y(v;) =0
(Tg ¢
5 8(e) =@ (vy), 8jzr =1idz
997 — 7

One can check directly its commutativity. In this way, we get a map s: X, — F¢. Again
a direct computation on the diagrams defining s and 7¢ shows that 7¢ o s ~idx, and that

the diagram inducing G =s o ¢ is

NNeWa7ZI — N W Z4
k a(g) =6 — v, qw=1idw, oza =0

Ble) =¢v), fizr =idyr

We will prove that G ~idr.. An object of F¢(A), where A is a ring, coming from the
atlas is given by a=(z 4, n): N1 @ W® Z? — A, where z=(a(&))i=21,...,Z3 € A, ,=
@w: W—> A*is an homomorphism and u = (u(v;)); = i1 ..., ugq € A*. Moreover, Ga=ao«a
is ((z/mi)i, &, 1). It is now easy to check that (i, 1) : Ga —> a is an isomorphism and that

this map defines an isomorphism G — id#,. |

Corollary 3.40. If £ is a smooth sequence then ng : ¢ —> Z, is an open immersion with

image Xf. O
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It turns out that if £ is a smooth sequence, then Xf has a more explicit descrip-

tion:

Proposition 3.41. Let £=¢&',...,£" be a smooth sequence, k be a field and a € X, (k).
Then
ae/‘\,’f(k) = (€. &N T — k' sit.a=20°.

Moreover if A0f € Xf(k), forsome E€ TY, A: T —> k*, then £ (EY, ..., ENn. O

Proof. We can assume k algebraically closed and T, integral. In this case, a€ Xf(k)
if and only if a: T, — k extends to a map Ker£ @ N = Tf—> k. So < holds. Con-
versely, from Theorem 3.21, we can write a=10° where A: T — k* and £ (Tf)v. From
Lemma 3.35, we see that va = (€Y, ..., ENn. Finally, if 10¢ € Xf for some &, then Supp € <

Supp £ and we are done. |

Lemma 3.42. Let £ = (£%);c; be a sequence of distinct smooth extremal rays and @ be a

collection of smooth sequences with rays in £. Set

FE = {(Q,M,z,é)efg

V(z)N---NV(z)#0
iffIe@st. ... E:cs |

Then, taking into account the identification made in Remark 3.16, we have

7E=J% -

3e®
Proof. Let x=(L, M,z i) e Uge@ Fs(T), for some scheme T and let peV(z)N---N
V(z,). This means that the pullback of 7¢(x) to k(p) is given by a= bOE +++E" for some

b: T, — k(p). By definition, there exists § € ©® such that a € F5(k(p)), that is, a= u0°® for
some § € (8)n, u: T —> k(p) . So

Supp &Y C {a= 0} = Supp § C Supp § => £ € (§)n.

For the other inclusion, since all the F; are open substacks of Fg, we can reduce
the problem to the case of an algebraically closed field k. So let (z, 1) € ]-"g’ (k) and set J =
{i € I | z =0}. By definition of ]—'g there exists § € ® such that n= (5f)je;§ § and, taking
into account Remark 3.16, this means that a e ]-"ﬁ(k) C Fs(k). [ |
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Definition 3.43. Let ® be a collection of smooth sequences. We define

Xg) = U Spec Z[Tfj] C SpecZ[T,] and Xf = U X(f C Z,.
L) 5cO

O

Theorem 3.44. Let £ = (£%);c; be a sequence of distinct smooth extremal rays and ® be
a collection of smooth sequences with rays in £. Then we have an isomorphism

fg’:ng(xf)ixf. O

Proof. Taking into account Lemma 3.42, it is enough to note that

JT;(X(;))=7T; UXﬂ% ZUfémézu_Féi)Xf.

3e® 3e® 3e®

Proposition 3.45. Let £ = (£Y);c; be a sequence of distinct smooth extremal rays and &

be a collection of smooth sequences with rays in £. Then the set

A ={(n,....n)0, |138€O st ..., 08}

is a toric fan in TV ® Q whose associated toric variety over Z is ng Moreover,
X, ~ (X3 /DZ). a

Proof. We know that if » is a smooth sequence then Spec Z[Tf] is a smooth open
subset of Spec Z[T}rnt] and it is the affine toric variety associated to the cone (n)q,.
It is then easy to check that A® is a fan whose associated toric variety is Xd(;). Since
Spec Z[Tﬁ] is the equivariant open subset of Spec Z[T}rm] inducing Xg in Z,, then X® is
the equivariant open subset of Spec Z[T}rnt] inducing Xf. In particular, we obtain the last

isomorphism. u

Lemma 3.46. Assume that T, is integral and set ® for the set of all smooth sequences.
Then X is the smooth locus of Spec Z[T,]. In particular, Z3™ = X ~ [X7 /D(Z")]. O

Proof. From Lemma 3.35, we know that Spec Z[Tf] is smooth over Z and it is an open
subset of SpecZIT,]. So we focus on the converse. Since SpecZ[T,] is flat over Z, we

can replace Z by an algebraically closed field k. Let p e SpecklT,] be a smooth point. In
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particular, p°™ is smooth too. If p°™ =0 then p e Speck[T] and we have done. So we can
assume p°™ = pg for some 0# € € T thanks to Lemma 3.23. We claim that there exists
a smooth sequence £, ..., £9 such that £ € (£1, ..., £9)y. This is enough to conclude that
p € Spec k[Tf] . Indeed if x,, € pfor some w € Ker £ N T; then it belongs to p°™ = ps and so
E(w) > 0, which is not our case.

So assume that we have £ € T\ such that pg is a regular point. Set W= (Ker& N
T,)z and T, =T, + W. Note that Speck[T|] is an open subset of Spec k[T, ] that contains
pe. Moreover, KIT|1/ ps =kIW]. Let vy, ..., vq € Ty be elements such that

T, =(vi,...,vg)n+ W and E(v;)>0

with g minimal. We claim that M = pg/p? >~ k[W]9, where p¢ is thought in kIT{]. Indeed
M is a k-vector space over the x,, v € T| that satisfies: £(v) > 0 and whenever we have v =
v’ 4+ v” with v, v” € T} it follows that £(v") =0 or £(v”) =0. A simple computation shows
that such a v must be of the form v; + W for some i. But since we have chosen g minimal
we have (v; + W) N (vj + W) =0 if i # j. This implies that M is a free k[W]-module with
basis x,,, ..., x,,. This shows that g =htps.

Now set V= (vy,...,vq)z. Since V4+ W=T,rkV <qand

KWl ~kIT]/ps = rk T = dim kT|] = ht ps + dim k[W]=q + rk W,

we obtain that vy, ..., vy are independent. Let £, ..., £9 given by £/ (v;) =§; ; and E‘iw =0.

In particular, W=Ker ¢ and it is generated by elements in T, . Since &y =0, we have

q
E=) EWE', Ew)>0.

i=1

Moreover, since T, € T, and &' € T,” we get that £ € T}, as required. [ |

Theorem 3.47. If £ is a sequence of distinct indecomposable rays containing the

smooth extremal rays then 7¢ induces an equivalence

Viz)n---NV(z,)=9
(L M. z8)eFe|if€h, ... Esisnota [ =m;"(Z5™) — Z5™.

smooth sequence
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Proof. Lemma 3.46 tells us that Z;m =Xf, where @ is the collection of all smooth
sequences, while Lemma 3.39 allows us to replace £ with the sequence of all smooth

extremal rays. Therefore, it is enough to apply Theorem 3.44 and Proposition 3.45. W

Proposition 3.48. Let a:T; — ke X,;(k), where k is a field. Then a lies in Z3™ if and
only if there exists a smooth ray £ € ) and A : T —> k* such that a=10°. O

Proof. Apply Theorem 3.47 and Proposition 3.41. |

3.4 Extension of objects from codimension 1

In this subsection, we want to explain how it is possible, in certain cases, to check
that an object of X, over a sufficiently regular scheme X comes (uniquely) from F¢ only

checking what happens in codimension 1.

Notation 3.49. Given a scheme X, we will denote by Pic X the category whose objects

are invertible sheaves and whose arrows are maps between them. O

Proposition 3.50. Let XL vbea map of schemes. If P_icYL Pic X is fully faithful
(resp. an equivalence) then X, (Y) AN Xy(X) has the same property. (]

Proof. Let (£, a), (L, a)eX,(Y) and o: f*(L,a) — f*(L,ad) be a map in A,(X). Any

map o;: f*L; —> f*L; comes from a unique map 7; : £L; —> L;, that is, o; = f*1;. Since
F @O @) = (fra®) = fd ) = " (a®) = d (t)

T isamap (£,a) — (£, @) such that f*z =o. We can conclude that f*: X, (Y) — X;(X)
is fully faithful.

Now assume that Pic Y—f; Pic X is an equivalence. We have to prove that
Xy (Y) —f; Xy(X) is essentially surjective. So let (M, b) € X4(X). Since f* is an equiva-
lence, we can assume M; = f*L; for some invertible sheaf £; on Y. Since for any invert-
ible sheaf £ on Y one has that £(Y)~ (f*£)(X), any section b(t) e M??® extends to a

unique section a(t) € £L*®. Since
f*@a®) ® a(s)) =b(t) ® b(s) = b(t + ) = f*(a(t + 5)) = a(t) ® a(s) = a(t + s)

for any ¢, s € T} and a(0) =1, it follows that (£, a) € X4(Y) and f*(L, a) = (M, b). [ |
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Corollary 3.51. Let X =N Y be a map of schemes and consider a commutative diagram:

X—»]'_Q

sl e

Y;)qu

where £ is a sequence of elements of T\'. Then if Pic X AN Pic Y is fully faithful (resp. an

equivalence) the dashed lifting is unique (resp. exists). O

Proof. It is enough to consider the 2-commutative diagram:

Fe(v) L Fe ()

rrél lné

A1) L 2,(%0)

and note that f* is fully faithful (resp. an equivalence) in both cases. |

Theorem 3.52. Let X be a locally noetherian and locally factorial scheme, £ = (£);c; be
a sequence of distinct smooth extremal rays and ® be a collection of smooth sequences

with rays in £. Consider the full subcategories

. codimxV(z)N---NV(z)=>2
Cx = (L. M. z6) € Fe(X) v - < Fe(X)

X i——- = iffscOst. ... E:Cs =

and
o Vpe X with codim,X <1
Dy =1 x € Xp(X) o < X (X).
Xikcp) € Yo
Then 7¢ induces an equivalence of categories
ey =n" (DY) — DY 0

Proof. We claim that

G)@( ={x € F£(X) |3U C X open subset s.t. codimxX - U > 2, xy € ]-'g(U)}.
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C Taking into account the definition of ]—"g in Lemma 3.42, it is enough to con-
sider

U=X-— U V(z)N---NV(z).
hsco S.t. £i1,... Eiscs

DIf peV(z)N---NV(z)and codim,X <1 then pe U and again by definition of
]-'g there exists § € ® such that &, ..., s C 6.

We also claim that
:D)(? ={x € Xp(X) | U C X open subset s.t. codimxX —U > 2, xjy € Xf(U)}.

D Such a U contains all the codimension 1 or 0 points of X.

C Let x € DY and x-Z X, be the induced map. If £ is a generic point of X, we
know that f(¢) |Xf| C |Z,|. In particular, f(|X]) € |2Z,|. Since both X and Z; are reduced
g factors through a map X SN Zs. Since Xf is an open substack of Z,, it follows that U =
g '(X}) is an open subscheme of X, yjy € X;(U) and, by definition of DY, codimxX —
U >2.

Taking into account Theorem 3.44, it is clear that C§ = n;(i)gg)). We will make
use of the fact that if U C X is an open subscheme such that codimyxX — U > 2 then the
restriction yields an equivalence Pic X ~ Pic U. The map C%{ — DY is essentially surjec-
tive since, given an object of D¥, the associated map X N Xy fits in a 2-commutative
diagram:

U— FZ CFe

Lk

X%Xd)

and so lifts to a map X — F¢ thanks to Corollary 3.51.
It remains to show that CY — D¢ is fully faithful. Let x, x’ € €% and U, U’ be
the open subscheme given in the definition of C%. Set V=U N U’. Taking into account

Proposition 3.50 and Theorem 3.44, we have

Homyr, x)(x, x') ————— Homy,x) (x. x")
12 [2
Homg, v)(Xv, Xy) —— Homx,w)(xv, X[y)
[2 [2
Homfg<v>(X|v» X\/V) — Homxg)(V)(XlVa Xv)-
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4 Galois Covers for a Diagonalizable Group

In this section, we will fix a finite diagonalizable group scheme G over Z and we will call
M =Hom(G, G,) its character group. So M is a finite abelian group and G = D(M). With
abuse of notation, we will write Oy[M] = OylGy] and Zy = Zpr), the main component
of D(M)-Cov. It turns out that in this case D(M)-covers have a nice and more explicit
description.

In the first subsection, we will show that D(M)-Cov >~ X, for an explicit map
T, 2, gm /{ep) and that this isomorphism preserves the main irreducible components of
both stacks. Moreover, we will study the connection between D(M)-Cov and the equiv-
ariant Hilbert schemes M-Hilb™ and prove some results about their geometry.

Then we will introduce an upper semicontinuous map |D(M)-Cov| LN N that
yields a stratification by open substacks of D(M)-Cov. We will also see that {h =0} coin-
cides with the open substack of D(M)-torsors, while {h <1} lies in the smooth locus of
Zyr and can be described by a particular set of smooth extremal rays. This will allow
us to describe the D(M)-covers over a locally noetherian and locally factorial scheme X
with (char X, |M|) = 1 whose total space is regular in codimension 1 (which, a posteriori,

is equivalent to the normal condition).

4.1 The stack D(M)-Cov and its main irreducible component Zjy;

Consider a scheme U and a cover X = Spec + on it. An action of D(IM) on it consists of a

A:@Am

meM

decomposition

such that Oy C A¢ and the multiplication maps A, ® A, into A, If X/U is a
D(M)-cover there exists an fppf covering {U; — U} such that Ay, ~ Oy, [M] as D(M)-

comodules. This means that for any m € M we have

Vi (Am)y, ~ Oy, = A, invertible.

Conversely, any M-graded quasi-coherent algebra 4 = Ay With Ag= Oy and A,

meM
invertible for any m yields a D(IM)-cover Spec «.
So the stack D(M)-Cov can be described as follows. An object of D(M)-Cov(U) is

given by a collection of invertible sheaves £,, for m € M with maps

Ymn:Lm ® Ln—> Lingn
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and an isomorphism Oy >~ L, satisfying the following relations:

Commutativity Associativity
~ id®yn
L ® Ly Ln® Ly £m®£n®£t*’£m®£n+t
\ / ‘//mn®1dJ/ J{ ‘/fm.n+t
‘/fm,n wnm ‘/fm+nt
[rm+n /v‘m+n QL — £m+n+t
~ ¥m.o

L ® Oy — Lim ® Lo

Neutral Lm \/

Element "

Lm

If we assume that £,, = Oyvp,, that is, that we have sections v, generating L,
the maps v, , can be thought of as elements of Oy and the algebra structure is given by

UmVn = ¥m.nUm+n- In this case, we can rewrite the above conditions obtaining

1/fm,n = wn,rm 1//m,O =1, Wm,n‘ﬁm-&-n,t = 1/fn,tl/fn-%—t,m- (4.1)

The functor that associates to a scheme U the functions ¢ : M x M — Oy satisfying the

above conditions is clearly representable by the spectrum of the ring

Ry = Z[Xm,n]/(xm,n — Xnm> Xm,0 — 1, X nXm4nt — XntXntt,m)- (4.2)
In this way, we obtain a Zariski epimorphism Spec Ry —> D(M)-Cov that we will prove
to be smooth. We now want to prove that the stack D(M)-Cov is isomorphic to a stack of

the form Xj.

Definition 4.1. Define K, as the quotient monoid of N™*¥ Ly the equivalence relation

generated by

emn™~ €nm» emo~0, emn+emint™ent+ nitm.

Also define ¢y : Ky —> ZM /(o) bY dr(em.n) = €m + €n — emin. O
Proposition 4.2. Ry ~ Z[K,] and there exists an isomorphism

X,y = D(M)-Cov (4.3)
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such that SpecZ[K,]~ Spec Ry — D(M)-Cov~ X, is the map defined in Proposi-

tion 3.3. In particular,

D(M)-Cov ~ [Spec Ry /D(ZM™/(e))].

Proof. The required isomorphism sends (£, K, N Sym*L) € X4, to the object of
D(M)-Cov given by invertible sheaves (£, = £,;}) and ¥, n = ¥ (€m.n)- [ |

We want to prove that the isomorphism (4.3) sends Z,,, to Z (see Definition 2.3)
and By, to BD(M). We need the following classical result on the structure of a D(M)-
torsor (see [8, Exposé VIII, Proposition 4.1 and 4.6]):

Proposition 4.3. Let M be a finite abelian group and P — U a D(M)-equivariant map.
Then P is an fppf D(M)-torsor if and only if P € D(M)-Cov(U) and all the multiplication

maps ¥m., are isomorphisms. O
Now consider the exact sequence

0— K — ZM/(gy) — M — 0
€m | > M

Definition 4.4. For m, n€ M, we define

Umon=0m(emn) =€n + e —ennc€ K

and K, as the submonoid of K generated by the vy, ,. We will set x,, , = x’m» € Z[K ] and,
for e K, Emn=E(Wmn). O

Lemma 4.5. The map

K, — K

emnt——— Umn
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is the associated group of K, and K, is its associated integral monoid. In particular, we

have a 2-cartesian diagram

SpecZ[K] — Spec Z[K,] —— Spec Ry

]

BD(M) Zu D(M)-Cov O

Proof. Set x=[],, ,%n.n. Since an object ¥ € Spec Ry(U) is a torsor if and only if ¥, , €
O, for all m, n, it follows that (Spec Ry)x = BD(M) Xpn-cov SPec Ry. We want to define
an inverse to (Ry)y —> ZI[K]. Consider the algebra S;; over Ry induced by the atlas map
Spec Ry —> D(M)-Cov, that is,

Sy = @ Rywy,, withwo=1, wnwn=XnnWmin
meM

The algebra (Sy)x is a D(IM)-torsor over (Ry)x and so wy, € (Su)% for all m. In particular,

we can define a group homomorphism

ZM/(eo) —— (Sm)i

ent———— Wn

which restricts to a map K — (Ry)x that sends vy, to Xpn . In particular, the map
K, —> K defined in the statement gives the associated group of K, and has as image
exactly K, which means that K, is the integral monoid associated to K.

In order to conclude the proof it is enough to apply Remark 3.8 and

Proposition 3.9. ]

Corollary 4.6. The isomorphism X, ~D(M)-Cov (4.3) induces isomorphisms By, =~
BD(M) and Z,,, >~ Zy. In particular, Zj is an irreducible component of D(M)-Cov and

BD(M) ~ [Spec ZIK1/D(ZM/(ey))] and Zy ~[SpecZIK,1/D(ZM/(e))] O

Note that the induced map ¢ : K —> ZM/(ep) is just the inclusion and so it is

injective. This means that any result obtained in Section 3 applies naturally in the
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context of D(M)-covers. In particular, now we show how we can describe the objects

of F¢, for a sequence of rays in KY, in a simpler way.

Proposition 4.7. Let M~[]", Z/l;Z be a decomposition and let my, ..., m, be the asso-
ciated generators. Given £ =£&!,...,£" ¢ Ki define ]—';ed as the stack whose objects over
a scheme X are sequences L=Ly,..., Ly, M=My,... . My, z2=21, ..., Z, L=l01, ..., Un

where £ and M are invertible sheaves over X, z, € M; and u are isomorphisms

—1: x>~ . gl li m; Er li m;
it L7 MEGen) = My g My .
Then we have an isomorphism of stacks
Fe Fged
(£7 Mﬂ za )\') B (('Cm,‘)i=1 ..... n» Mv Z, ()\'(lleml))l=l ..... n) D
Proof. We want to find o, V, vy, ..., vy as in Definition 3.25 such that f;ed’“ =724 and

that the map in the statement coincides with the one defined in Propogition 3.57. Set
88:M—1{0,...,l; — 1} as the map such that m;(m) = 7;(8}, m;), where 7; : M — Z/ ;7 is
the projection, and think of it also as a map 8 : ZM/(ey) —> Z. Set V = 69?:1 Zem;, vi = em,
and o : ZM/(ey) —> V as o(em) =Y .~ 8 v;. Clearly, (id — 0)ZM /() € K and (id — o)V =0.
So W=o0K. We have

n n
o (Vmn) = Z 8;;,”01‘ € @ I; Zv;
i=1 i=1

since 8§nn €{0,l;} for all i. On the other hand, o (vg,—1ym;.m;) =liv;. Therefore, we have W=

P, liZv;. It is now easy to check that all the definitions agree. [

We now want to express the relation between D(M)-Cov and the equivariant
Hilbert scheme, which can be defined as follows. Given m =m;, ..., m, € M, so that D(M)
acts on A}, = SpecZlx, ..., x| with graduation deg x; = m;, we define M-Hilb™: Sch®® —
(sets) as the functor that associates to a scheme Y the set of pairs (X—f> Y, j), where
X e D(M)-Cov(Y) and j: X — AT is an equivariant closed immersion over Y. Such a pair
can also be thought of as a coherent sheaf of algebras 4 € D(M)-Cov(Y) together with a
graded surjective map Oylxi, ..., %] —> . This functor is proved to be a scheme of finite

type in [10].
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Proposition 4.8. Letm=m,, ..., m, € M. The forgetful map 9, : M-Hilb™ — D(M)-Cov
is a smooth Zariski epimorphism onto the open substack D(M)-Cov™ of D(M)-Cov of
sheaves of algebras 4 such that, for all yeY, A ® k(y) is generated in the degrees
mi, ..., m, as a k(y)-algebra. Moreover, M-Hilb™ is an open subscheme of a vector bun-
dle over D(M)-Cov™. O

Proof. Let A=@D,, ., Am € D(M)-Cov and consider the map
N SYM(Ay, @ B Ay, ) — A

induced by the direct sum of the inclusions A, —> . It is easy to check that n, is
surjective if and only if 4 € D(M)-Cov™. Therefore, D(M)-Cov™® is an open substack of

D(M)-Cov and clearly contains the image of ¥,,. Consider now the cartesian diagram

F —— M-Hilb™®

L

7 - D(M)-Cov™

andlet U - Thea map. The objects of F(U) are pairs composed by a graded surjection
Oylx, ..., %] — B and an isomorphism B >~ ¢*«A. This is equivalent to giving a graded

surjection Oylx, ..., %] — ¢*A. In this way, we obtain a map

FZ l_[ Hom(Or, Am,) ~ Spec Sym(@ A
. ;

1

We claim that this is an open immersion. Indeed given (@;); : U — [[; Hom;(Or, Anm,),
the fiber product with F is the locus where the induced graded map Oylx, ..., %] —
A ® Oy is surjective, that is an open subscheme of U. In particular, F is smooth over
T and so v, is smooth too. It is easy to check that it is also a Zariski epimorphism.
Finally, the vector bundle A of the statement is defined over any U — D(M)-Cov™ given
by A =D, An by Ny = D; A, u

Remark 4.9. If the sequence m contains all elements of M — {0}, then D(M)-Cov™ =
D(M)-Cov. Therefore, in this case M-Hilb™ is an atlas for D(M)-Cov. O
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Remark 4.10. We have cartesian diagrams:

Win Vm Un Spec Ru
D(ZM /(eo)) J open l vector l open J
torsors immersions bundles immersions
M-Hilb™ Hy, D(M)-Cov™ — D(M)-Cov

where the comments apply to the horizontal maps. In particular, since BD(M) C
D(M)-Cov®, we can conclude that z?il(ZM) is the main irreducible component of
M-Hilb™. Moreover, the above diagram shows that M-Hilb™ and D(M)-Cov, as well
as their main irreducible components, share many properties such as smoothness, con-

nection, integrality, and reducibility. O

We now want to study some geometrical properties of the stack D(M)-Cov and,

therefore, of the equivariant Hilbert schemes.

Remark 4.11. The ring Ry can be written as the quotient of the ring Zlxn alim.nes,
where J is {(m,n) € M? | m,n, m+ n#0} divided by the equivalence relation (m, n) ~
(n, m), by the ideal

I (Xm,nxmmt — X tXnpem Withm,nt, m+nn+t,m+n+t#0and m# t,)

X mtX-mitm — X-m.sX-m+s.m With m, s, t # 0 and distinct

Indeed, the first relations are trivial when one of m, n, and t is zero or m =t, while if
m + n=0 yield relations X, _m = X_m :X_m+t.m. Using these last relations, we can remove

all the variables x, , with 0 € {m, n, m + n}. O

Remark 4.12. There exists a map f:K, —> N such that for any m,n#0 we have
femn)=1ifm+n=#0, f(em,—m) =2 otherwise. In particular, f(v) =0 only if v = 0. More-
over, finduces an N-graduation on both (Ry; ® A) and Z[K,] ® A, where A is a ring, such
that the degree zero part is A and that the elements X, , with m + n## 0 are homogeneous
of degree 1. The map f is obtained as the composition K, — K C ZM/(ey) LN Z, where
h(en)=1if m#0. O

One of the open problems in the theory of equivariant Hilbert schemes is
whether those schemes are connected. As said above M-Hilb™ is connected if and only

if D(M)-Cov™ is so. What we can say here is:
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Theorem 4.13. The stack D(M)-Cov is connected with geometrically connected fibers.
If M — {0} C m, then M-Hilb™ has the same properties. O

Proof. It is enough to prove that Spec Ry ® k is connected for any field k. But Ry ® k
has an N-graduation such that (Ry ® k)o = k by Remark 4.12 and it is a general fact that

such an algebra does not contain nontrivial idempotents. |
We now want to discuss the problem of the reducibility of D(IM)-Cov.

Definition 4.14. Let S be a scheme. An S-scheme X is said universally reducible over S
if, for any base change S — S, the scheme X x5 S is reducible. A scheme is universally

reducible if it is so over Z. O

Remark 4.15. It is easy to check that X is universally reducible over S if and only if all
the fibers are reducible. O

Lemma 4.16. If there exist m, n, t, a € M such that

(1) m, n, and t are distinct and not zero;

(2) a#0,m,ntm—-nn—m,n—tt—mm-—ta2m-—t2a2n—t,m+n—t,m+
n— 2t;

(3) 2a#m+n-—t

then Spec Ry, is universally reducible. |

Proof. Letkbeafield and I = (x* — x%) be an ideal of klxi, ..., x.] = klx]. We will say that
a € N is transformable (with respect to I) if there exists i such that o; <« or 8; < «. Here,
by o < B € N" we mean o < j for all j. A direct computation shows that if x* — xf € I and
a # B, then both @ and 8 are transformable.

We will use the above notation for the ideal I defining Ry ® k as in Remark 4.11.
In particular, the elements «;, B; € N7 associated to the ideal I are of the form e, , + €y y..
with u, v, u+ v, w,u+ v+ w #0.

Set i =[], nXmn Since Ry ® k— kIK,]C kIK]= (Ry ® k)., there exists N >0
such that P =Ker(Ry ® k—> k[K,]) = Ann Y. Our strategy will be to find an element
of P which is not nilpotent. Since P is a minimal prime, being Spec k[K,] an irreducible
component of Spec Ry ® k, it follows that Ry ® kis reducible. Now consider « = e, m—q +

_ J _
emin—t—at+a—m + Crra—nn-ar B = €min—t—at+a—n+ €an-a + €m-at+a—m € N’ and z=x* — )_fﬁ- We
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will show that uz=0, that is, z€ P and that z is not nilpotent. First of all note that zis
well defined since for any e, in « or 8 we have u, v#0 and 0# u+ v € {m, n, t} thanks
to (1) and (2). Let Sy be the universal algebra over Ry, that is, Sy =,,c)s Ruvm with

U Un = Xm.nVUm+n and vg = 1. By construction, we have

(VaVm—-a) Vmin—t—aVtra—m) Vera—nVn—a) = )_(a UmUnUt

= (Vm4n—t—aVt+a—n) (VaVn—a) (Um—a,t+a—m) = }_(ﬂvm UnUt

SO X*Xm nXmintVUmintt = X° Xm nXmintUminse and therefore zu =0, that is, z€ P.

Now, we want to prove that any linear combination y = ax + b e N’ with a,be N
is not transformable. First remember that each e, , in y is such that u+ v € {m, n, t}. If we
have e,, + eutvw <y, then there must exist g ; <y such thatie{m,n,t} or je{m,n,t}.
Condition (2) is exactly what we need to avoid this situation and can be written as
fam—am+n—t—at+a—m,t+a—nn—ajNn{m,nt}=40.

In particular, if we think of K, as a quotient of N7, we have ax + b =d« + b'B
in K, if and only if they are equal in N”. Assume for a moment that « # 8 in N”. Clearly,
this means that « and 8 are Z-independent in Z”. Since any linear combination of « and
B is not transformable, it follows that x* and x? are algebraically independent over k
in Ry ® k and, in particular, that z= x* — x® cannot be nilpotent. So it remains to prove
that a # 8 in N”. Note that for any i € {m, n, t}, there exists only one e,, in « such that
u+ v =1 and the same happens for 8. So, if « = 8 and since m, n, and t are distinct, those
terms have to be equal, for instance, e; m—q = €émin—t-at+a—n But a#m+n—1t— a by (3),
while a #t + a — nsince t # n. Therefore, o # 8. |

Corollary 4.17. If |M|> 7 and M % (Z/27)° then D(M)-Cov is universally reducible and
the same holds for M-Hilb™ provided that m contains all elements of M — {0}. O

Proof. We have to show that Ry is universally reducible and so we will apply
Lemma 4.16. If M=C x T, where C is cyclic with |C|>4 and T #0 we can choose: m
a generator of C, n=3m, t=2m and ae T — {0}. If M cannot be written as above, there
are four remaining cases. (1) M ~7/8Z: choose m=2,n=4,t=6,a=1. (2) M cyclic with
|M| > 8 and |M| # 10: choose m=1,n=2,t=3,a=5. (3) M~ (Z/2Z)" with [ > 4: choose
m=e,n=e, t=e;,a=e;. (4) M~ (Z/37) with | >2: choose m=e,,n=2e,,t=e,,a=
m-+t=e; + e. [ |
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Proposition 4.18. D(M)-Cov is smooth if and only if Zy, is so. This happens if and only
if M~7/27,7/37,7Z/27Z x Z/2Z and in these cases D(M)-Cov = Zy. To be more precise,
Rur = ZXm nl(m.mes, Wwhere J is the set defined in Remark 4.11.

In particular, M-Hilb™ is smooth and irreducible for any sequence m if M is as
above. Otherwise, if M — {0} € m, M-Hilb™ is not smooth. [l

Proof. Let k be a field. Note that
D(M)-Cov smooth <= Ry smooth = Zj; smooth = k[K]/k smooth.

We first prove that if k[K.] is smooth then M has to be one of the groups of the
statement. We have K, ~N" @ Z° and therefore k[K,] is UFD. We will consider k[K,]
endowed with the N-graduation defined in Remark 4.12. Since any of the x,, has
degree 1, it is irreducible and so prime. If we have a relation Xy, nXm-int = Xn tXn+t.m With
m,ntm+nn+tm+n+t#0and m#t, then Xy, | X0 X+t m implies that x, , = X, or
Xm.n = Xn+t.m, Which is impossible thanks to our assumptions. We will prove that if M is
not isomorphic to one of the group in the statement, then such a relation exists. Clearly,
it is enough to find this relation in a subgroup of M. So it is enough to consider the
following cases. (1) M cyclic with |M|>5: choose m=n=1,t=2. (2) M ~7/4Z: choose
m=1,n=2,t=3. (3) M~ (Z/2Z)%: choose m=e;, n=e,, t=e;. (4) M~ (Z/37Z)?: choose
m=n=e,t=e;.

We now want to prove that when M is as in the statement, then the ideal I of
Remark 4.11 is zero. If we have a relation as in the first row, since m # t we have |M| > 3.
If M~7/37 then t=2m and m+t=0. If M~ (Z/27)?, if m,n, and t are distinct then
m+ n+ t=0, otherwise m =nand m + n=0. If we have a relation as in the second row,
since m, t, and s are distinct, we must have M ~ (Z/2Z)%. Therefore, m + t=s and the

relation becomes trivial. [ |

Corollary 4.19. D(Z/27Z x 7Z/2Z)-Cov is isomorphic to the stack of sequences
(Li, ¥i)i=1.2.3, Wwhere L;, L, and L3 are invertible sheaves and ¥ : Ly ® L3 —> L1, VY2
L1® L3 —> Ly, Y3: L1 ® L2 —> L3 are maps. O

Proof. Set M= (Z/2Z)%. Thanks to Proposition 4.18, we know that K, = K, ~Nuv, o, ®

Nve, ¢, +e, ® Nvg, ¢,+¢,- SO an object of D(M)-Cov is given by invertible sheaves £; =
‘Cel s EZ = E621 ‘63 = £91+ez and maps I//1 = 1//e2,61+e21 wZ = we1,el+ez’ w3 = ‘ﬁel,ez- u
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Remark 4.20. D(Z/4Z)-Cov and Z/47Z-Hilb™, for any sequence m, are integral and nor-
mal since one can check directly that Ryz =7ZIx1 2, X33, X2.3, X111/ (X1,2X33 — X2 3%11). 1
am not able to prove that D(M)-Cov is irreducible when M is one of 7Z/5Z,7/6Z,
777, (Z)27)%. Anyway the first two cases seem to be integral thanks to a computer pro-
gram, while for the last ones there are some techniques that can be used to study this

problem but they are too complicated to be explained here. O

4.2 The invariant h: |[D(M)-Cov| — N

In this subsection, we investigate the local structure of a D(IM)-cover, especially over a
local ring. In particular, we will define an upper semicontinuous map h: |D(M)-Cov| —
N that measures how much a cover fails to be a torsor: the open locus BD(M) € D(M)-Cov

will exactly be the locus {h=0}.

Notation 4.21. Given a ring A, we will write B € Spec Ry(4) meaning that B is an M-
graded A-algebra with a given M-graded basis, usually denoted by {vm}men with vg =1,

and a given multiplication ¥ such that

B= @ Avpp,  UnVn = Ym nVmin-

meM

We will also denote by A* the group of invertible elements of A. If f: X — Y is an affine
map of schemes and g € Y, we will use the notation Ox 4= f.Ox ®0, Oy4. In particu-
lar, X xy Spec Oy4 >~ Spec Ox 4. Note that, although Oy, is written as a localization in a

point, this ring is not local in general. O

Lemma 4.22. Let Abe aring and B € Spec Ry(4), with graded basis v, and multiplica-
tion map . Then the set

H¢=HB/A={m€M|UmGB*}I{mGMh//m’_mEA*}
is a subgroup of M. Moreover, if m, ne M and h e Hy then ¥, , and Y, nip, differs by an

element of A*. If H is a subgroup of H, then C =& Av,, is an element of BD(H(A)).

Moreover if o : M/H — M gives representatives of M/H in M and we set wy, = vy(m) for

meH

m € M/H we have

B= P CwmeSpecRuu(C).
meM/H
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Finally, if we denote by ¢’ the induced multiplication on B over C we have Hy, = Hy,/H

and for any m, ne M v, ,, and Y, ,, differ by an element of C*. O
Proof. From the relations vy,v_m = ¥m —m, pi M1 _ AV, oMl _ AYm.—m, where A € B and

VUmVUn = V¥m nUm+n We see that v, € B* <= ¥, _m € A* and that H;, < M. From (4.1), we get
the relations ¥_pp = Yhu¥niu—r a0d Vi nVminh = YnhW¥mnrh SO if he H, then vy, € A*
for any uand vy, , and Yy, nn differ by an element of A*.

Now consider the second part of the statement. From Proposition 4.3, we know
that C is a torsor over A. Since for any m we have vy, = (Yhm/Vh)Vson), Where h=o0 () —

m € H we obtain the expression of B as M/H graded C-algebra and that
V= Yom).omWhomy+om/vn) wWhere h=o(m+n) —o(m) —o(n).
From the above equation, it is easy to conclude the proof. |

Definition 4.23. Given a ring A and B € Spec Ry (4), we continue to use the notation
Hp, 4 introduced in Lemma 4.22 and we will call the algebra C obtained for H = Hg, 4 the
maximal torsor of the extension B/A. If k is a field and £ € K} we will write Hg = Hp/x,

where B is the algebra induced by the multiplication 0. In particular,

He={meM|En _m=0}
Finally, if f: X — Y e D(M)-Cov(Y) and q € Y we define H s(q) = Ho, /0y, O
Proposition 4.24. We have a map

|D(M)-Cov| r, {subgroups of M}
B/kt » Hp/k

such that, if ¥ — D(M)-Cov is given by X—f> Y, then Hy=Ho |u. O

Proof. It is enough to note that if A is a local ring, B € D(M)-Cov(4) is given by
multiplications ¢ and n:A— A/m,—> k is a morphism, where k is a field, then
VYm,—m € A" <= 7T (Ym,—m) #0. [ |
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Remark 4.25. Let (A,m,) be a local ring and B € Spec Ry (4) with M-graded basis
{vm}mem. Then Hgja = Hp/a(Mma). If Hg; 2 = 0 then any v,,, with m #0, is nilpotentin B® k

and therefore B is local with maximal ideal

Mmp=muD @ Avp,
meM—{0}

and residue field B/mp = A/m,4. In particular, mB/m% is M-graded. O

Lemma 4.26. Let A be a local ring and B=6p Avp, € D(M)-Cov(A) such that Hg/s =

0. If my,...,m, € M then B is generated in degrees m,..., m, as an A-algebra if and

meM

only if mp=(ma, vm,, ..., Um,)5. O

Proof. We can write mp=ms® P

mem—i0) AVm. Denote v=vp,, ..., Un, and 7(a)=

> ;a;m; for « e N". The “only if” follows since given [ € M — {0} there exists a relation of
the form v; = pv®* with € A* and o #0 and so v; € (M4, vm,, ..., Um,) 5. For the converse
note that, given l € M — {0}, vy e mp = (M4, v, ..., Um,) Means that we have a relation
V] = Avpvp, for some i, A € A* and I’ =1 — m;. Moreover, v; ¢ Alv] implies that vy ¢ Alv] and
I'#0. If, by contradiction, we have such an element [ we can write v; = vy, - - - v, with
n; € M — {0} and s > |M|%. In particular, there must exist i such that m =n; appears at

least | M| times in this product. So my4 > M | v; and v; € m 4B, which is not the case. W

Assume that we have a cover X—f> Y € D(M)-Cov(Y). We want to define, for any
meMamap hgm =hx/ym: Y —> {0, 1}. Let g € Y and denote by C the “maximal torsor” of
Ox q/Ovq (see Definition 4.23). Also let pe f~!(q) and set pc = pN C. Taking into account
Remark 4.25, we know that B = (Ox,q) p = (Ox,q) p. and that B € D(M/H 7(q))-Cov(Cp,) with
Hpc,. =0. Moreover, B is local, B/mp =Cp/pc and mp/m?% is (M/H r(q))-graded. If we
denote by m the image of me M in M/H ¢(q) and by (mp/m?3), the graded pieces of

mB/m%, where t € M/H r(q), we can define:

Definition 4.27. With the above notation, we set

if meH ¢ (q),
hf,m(q) = . 2 . !
dimg, ;p, (Mp/Mm3)m otherwise.
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We also set

hs(q) = dimg, p, (mp/m%) — dime,, p, (Mp/M5)0 = (Z hf,m<q>) /IHs(@).

meM

If £ e K] we set hg ;y =hfm, he =hye N where f is the cover Spec A— Speck and A is

the algebra given by multiplication 0° over some field k. d

The following lemma shows that the value of hf;,(g) does not depend on the
choice of the point pe X over g€ Y.

Lemma 4.28. Let (A, m,) be a local ring, B € D(M)-Cov(A) given by the multiplication
Y and te€ M. Set also hp/a;=hg/a:(ma), for some choice of a prime of B over m,. Then

hga:=1if and only if the following conditions are satisfied:

o t¢ HB/A;
o forall u, ne M — Hg,4 such that u+ n=t mod Hg 4 we have v, , ¢ A*. O

Proof. Let C be the maximal torsor of the extension B/A and p be a maximal prime of

B. We use notation from Lemma 4.22. For any [ € M — Hg, 4, we have a surjective map
k(p) = (mg,/ pCp); —> (Mg, /m3 )i

and so dimk(p)(mgp/m%p)l- €{0, 1}, where [ is the image of I under the projection M —>
M/ H,,p. If we prove the last part of the statement clearly we will also have that hg,4; is
well defined. If t € Hg 4 then hg,a; =0, while if there exist u, n as in the statement such
that ¥, , € A*, then w; € C;wawﬁ C m%p and again hg,4 ;= 0. On the other hand, if hg/4 ;=0

and t ¢ Hg/4 then w; € m%p and therefore we have an expression

wi = bx + Z baﬁﬁwawﬁ with b, bl‘zjz € Bp, Xe me,
L, 70

The second sum splits as a sum of products of the form ¢z rwswywy with s+ 4+ n=t¢
and ¢ 7 € Cp. Since C)p, is local, one of these monomials generates C,w;. In this case, if

s+ u=0 then &€ Hp,/c, =0 which is not the case. So we have an expression

Wi = AWgWs = Mb{—mwg = wz/lﬁ € C;’;,
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where @, n# 0 and 4+ n={. Since V¥ ; and ¥, differs by an element of C* thanks to
Lemma 4.22, it follows that ¢, , € A*. [ |

Proposition 4.29. We have maps

ID(M)-Cov| — ™ {0, 1} ID(M)-Cov| — " N
B/ki—— hgjim B/k+————— hpk

such that, if ¥ — D(M)-Cov is given by X—f> Y,then hfm =hpoluland hy=holul. O

Proof. Taking into account Lemma 4.28 and Proposition 4.24, it is enough to note that if
Ais alocal ring, B € D(M)-Cov(4) is given by multiplications ¢ andn: A— A/ms— k
is a morphism, where k is a field, then ¥, , € A* <= 7 (Yy,) #0 and Hg/a = Hpg k. W

Corollary 4.30. Under the hypothesis of Lemma 4.26, {m € M | hg/am = 1} is the mini-
mum among the subsets Q of M such that B is generated as an A-algebra in the degrees

Q. In particular, B is generated in hgp, 4 degrees. O

Proposition 4.31. Let (A4, m,) be a local ring, B € D(M)-Cov(4) and C the maximal tor-
sor of B/A. Then

hg/a(ma) = dimyp,) 25,c ®5 k(p)

for any maximal prime p of B. In particular, if (|Hg,al, char A/m,) =1 we also have

hg;a(m ) = dimyy,) 25,4 @ k(p) for any maximal prime p of B. O

Proof. If Ais any ring and B € D(M)-Cov(4) is given by basis {vy}men and multiplica-

tion v one sees from the universal property that
-QB/A = BM/(QOa Unem + Umén — 1pm,nem—&-n)-

Now consider B € D(M/H)-Cov(C), where H = Hg,4 and let p be a maximal prime of B.
Following the notation of Lemma 4.22, we have that w,, € p for any m € M/H — {0} and
Vinn€P < VYmn€ma. SO 2p/c ®p k(p) is free on the e, for m € M/H — {0} such that
for any u, ne M/H — {0}, u+ n=m implies v, , ¢ A", that are exactly hg,a(m ) thanks to
Lemma 4.28. |
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Corollary 4.32. The function h is upper semicontinuous. |

Proof. Let X—f> Y be a D(M)-cover and qeVY. Set r=hys(q) and H="Hs(q). We can
assume that Y=Spec A and X =Spec B with graded basis {vy}men and multiplication
¥ and that ¥y, _, € A* for any m € H. Set C = Alvplnen. The ring C, is the maximal tor-
sor of B;/A4 and so, if pe X is a point over g, we have r = dimyp £25,¢c ®35 k(p). Finally,
let U € X be an open neighborhood of p such that dimy) £25,c ®p k(p') <rforany p' e U
and V = f(U). We want to prove that h<r on V. Indeed given q' = f(p') € V, if D is the

maximal torsor of By /Ay, we have Cy € D C By. So
h¢(q') = dimyy) 25,/p ®3, k(P) < dimky) 23, /c, @5, k(P) <T. n

Remark 4.33. The O section Ry —> Z, that is, the map that sends any x,, , with m, n#0

to zero, induces a closed immersion
Pic™~! ~ BT =[SpecZ/T] < [Spec Ry /7]~ D(M)-Cov,
where 7 =D(ZM /(e)). O

Proposition 4.34. The following results hold:

(1) {h=0}=[BD(M)|;

(2) {h=|M[}=0;

(3) {h=|M]—1}=|BD(ZM/(ey))| (see Remark 4.33). O
Proof. If X—f> Y is a D(M)-torsor, clearly hy=0. So (1) and (2) follow from
Corollary 4.30. Finally, if B € D(M)-Cov(k) with multiplication v, hg,x=|M| — 1 if and
only if Hp;x=0 and hg/xm =1 for all m € M — {0}. This means that ¢, ,=0 for any
m, n# 0 by Lemma 4.28. [ ]

In particular, setting U; ={h <i}, we obtain a stratification BD(M)=U, CU; C
-+ C Ujpp—1 = D(M)-Cov of D(M)-Cov by open substacks.
4.3 Thelocus h<1

In this subsection, we want to describe D(M)-covers with h < 1. This means that “up to

torsors” we have a graded M-algebra generated over the base ring in one degree. We will
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see that {h < 1} is a smooth open substack of Z;, determined by a special class of explicit
smooth extremal rays of K, . This will allow us to give a description of covers over locally
noetherian and locally factorial scheme X with (char X, |M|) =1 whose total space is
normal. Such a description, when X is a smooth algebraic variety over an algebraic

closed field k with (chark, |M|) =1, was already given in [18, Theorem 2.1, Corollary 3.1].

Notation 4.35. Given £ € K we will write &y p = E(vm,»). Since K @ Q >~ QM/(ep) we will
also write &, =E&(en) € Q, so that &y n=En + En — Emin. When we will have to consider
different abelian groups, we will write K, y;, Kjs instead of, respectively, K., K, in order
to avoid confusion. Given a group homomorphism n: M — N, we will denote by 7, :
Kur — Ky the homomorphism such that n.(vm,n) = vym).nm for all m, ne M, where K, is

the group associated to K, O

Remark 4.36. Let A be a ring and consider a sequence £ =¢&!,...,£" ¢ KY. An element

of F¢(A) coming from the atlas (see Remark 3.13) is given by a pair (z, A) where z=

z,...,zz€ A and A: K — A*. The image of this object under n¢ is the algebra whose
e e _1 Ehn Enn
multiplication is given by Y n= A, ,2,"" -2 ™". 0

Lemma 4.37. Let n: M —> N be a surjective morphism and £ be a sequence in (K, y)".

Then £ is a smooth sequence for N if and only if £ o 5, is a smooth sequence for M. O

Proof. We want to apply Lemma 3.38. Therefore, we have to prove that n.(K,y) = K n,
which is clear, and that Ker 5, = (Kern, N K,y). Consider the map f:ZM/(ey) — Z" /(&)
given by f(em)=e€,m) and set H=Keryn. Clearly, fk, =n. It is easy to check that
G = (vpmnfor m € H)y CKern* € Ker f and that Ker f/Kern, ~ H. So in order to conclude,
it is enough to note that the map H — Ker f/G sending h to ey, is a surjective group
homomorphism since we have relations e, + ey — enin =vnp and epin — €m =6€n — Vmp
forme M and h, W € H. [ |

Proposition 4.38. Let n: M —> Z/lZ be a surjective homomorphism with [ > 1. Then

0 ifn(m)+nn <l,
& (vmn) =
1 otherwise

defines a smooth extremal ray for K. O
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Proof. &"e KY because, if 0 :Z/1Z — N is the obvious section, £” is the restriction of
the map ZM/(ey) —> Z sending e, to o(n(m)). In order to conclude the proof, we will
apply Lemma 4.37 and Proposition 3.37. Set N =Z/IZ. One clearly has £" = &9 0 5, and
so we can assume M = Z/1Z and n =id. In this case, one can check that vy 1, v12,..., V111
is a Z-base of K such that £7(v; ;) =01if j <l -1, E"(v1;-1) =1. |

Those particular rays have already been defined in [18, Equation 2.2].

Notation 4.39. If ¢:K, —> ZM/(e;) is the usual map we set ZZ% = Xf (see
Definition 3.17) for any sequence £ of elements of K}. Remember that if £ is a smooth
sequence then ZA% is a smooth open subset of Z;; (see Corollary 3.40) and its points have
the description given in Proposition 3.41.

Set @y for the union over all d> 1 of the sets of surjective maps M — Z/dZ. O

Theorem 4.40. Let £ = (£"),es,. We have

th=1}=J 25

nedy

In particular {h <1} C Z3 and 7¢ induces an equivalence of categories
(L M. 22)eFe | V(z) N V(g) =0 if n#p)=n;'((h<1}) — {(h<1). O

Proof. The last part of the statement follows from the first one just applying
Theorem 3.44 with © ={(£")},ece,. Let k be an algebraically closed field and B¢
D(M)-Cov(k) with graded basis {v,;}men and multiplication .

D. Assume B € Zﬂ'(k). If B is a torsor we will have hg,x =0. Otherwise, we can
write ¥ = £0°" for some £ : K — k*. Replacing Spec k by a geometrical point of the max-
imal torsor of B/k, we can assume that M =Z/dZ and n =id. In particular, Hz,x =0 and,
from the definition of £19, we get B ~ kix]/(x%). So hg/, = dimxmp/m3 =1.

C. Assume hg,x=1. Set C for the maximal torsor of B/k (see Definition 4.23),
H = Hpx and | = |M/H|. The equality hg,r =1 means that there exists a unique ¥ € M/H
(where r € M) such that hg/,, =1 and so C4lv,] = B, > C4lx]/(x!) for all (maximal) primes
q of C. In particular, B = C[v,] ~ C[x]/(¥') and F generates M/H.Let n: M — M/H ~7Z/17Z
be the projection. We want to prove that B € Z§,. Replacing k by a geometrical point

of some fppf extension of k, we can assume C = k[H], that is, vyvpy = vpp if B, W € H.
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Finally, the elements vhvi for he H and 0 <i <[ define an M-graded basis of B/k whose

associated multiplication is 0¢". [ |

Theorem 4.41. Let £=(£"),e0, and let X be a locally noetherian and locally factorial

scheme. Consider the full subcategories
Cx={(L. M, z.}) € Fe(X) | codimx V(z,) N V(z,) = 2 if n # pu} € Fe(X)
and
DL ={v L X e D(M-Cov(X) | hy(p) <1 Vpe X with codim,X < 1} C D(M)-Cov(X).

Then ¢ induces an equivalence of categories

Dy =7;'(Cy) — C}. O
Proof. Apply Theorem 3.52 with ® ={(£")},ca,,- |
Theorem 4.42. Let £=(£"),ecqs, and let X be a locally noetherian and locally factorial
scheme without isolated points and (char X, |M|) =1, that is, 1/|M| € Ox(X). Consider
the full subcategories

Regk = {Y/X € D(M)-Cov(X) | Y regular in codimension 1} € D(M)-Cov(X)

and

— VE +£6 e & codi 174 nv >2
Rogh = (L M gy eFex| S 7 0SecodmVzNVE) =2l oy
VEeEVpe XWup(ze) <1

Then we have an equivalence of categories
Regy = mg' (Regy) —> Regy. O
Proof. We will make use of Theorem 4.41. If ¥ > X eRegk, pe YV and q= f(p),

then hs(q) < dimy, mp/m%=1. So Regy € Dy. So we only have to check that Regy =

g '(Regl) C Cy. Since X is a disjoint union of positive dimensional, integral connected
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components, we can assume that X =Spec R, where R is a discrete valuation ring. Let
X € Cx, A/R e Dy the associated covers, H = Hy/g and C be the maximal torsor of A/R.
We have to prove that y € ligg; if and only if A is regular in codimension 1. Since Dgr(H)
is etale over R so is also Spec C. It is so easy to check that, replacing R by a localization
of C and M with M/H, we can assume that H = 0. Since x € C, the multiplication of A
over R is of the form v = Mz’5¢, where i : K —> R* is an M-torsor, zis a parameter of A4,
¢: M —> Z/IZ is an isomorphism and r = vg(zg¢). Moreover, vg(zgv) = 0 if ¥ # ¢. Replac-
ing M by Z/1Z through ¢ we can assume ¢ =id. Finally, since p induces an (fppf) torsor
which is etale over R, replacing R by an etale neighborhood, we can assume p = 1. After
these reductions we have A= R[X]/(X™ — Z’) which is regular in codimension 1 if and

only if r=1. |

Remark 4.43. In the above theorem, one can replace the condition “regular in codimen-
sion 1” in the definition of Reg§( with “normal” thanks to Serre’s conditions, since all
the fibers involved are Gorenstein. Moreover, note that a locally noetherian and locally
factorial scheme X is a disjoint union of integral connected components. Therefore, an
isolated point is just a connected component which is Speck, for a field k. We want to
avoid this situation because regularity in codimension 1 for a cover over a field is an

empty condition. O

Remark 4.44. Theorem 4.42 is a rewriting of [18, Theorem 2.1 and Corollary 3.1]
extended to locally noetherian and locally factorial schemes without isolated points,
where an object of Fg(X) is called a building data. O

5 The Locus h<2

In this section, we want to give a characterization of the open substack {h<2}C
D(M)-Cov as done in Theorem 4.41 for {h<1}. The general problem we want to solve

can be stated as follows.

Problem 5.1. Find a sequence of smooth extremal rays £ for M and a collection ® of

smooth sequences with rays in £ such that (see Notation 4.39)

th=2)={] 2y

€@
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or, equivalently, such that, for any algebraically closed field k, the algebras Ae
D(M)-Cov(k) with har <2 are exactly the algebras associated to a multiplication
of the form v =w0f where w:K — k* is a group homomorphism and £ € (§)y for

somed € 6. 0

For example in the case h < 1 the analogous problem is solved taking £ = (£%)4ca,,
and ® = {(€) for £ € £} (see Theorem 4.40). Once we have found a pair £, ® as in Prob-
lem 5.1 we can formally apply Theorems 3.44 and 3.52. This is done in Theorems 5.42
and 5.45.

Similarly to what happens in the case h <1, we can restrict our attention to the
case when M is generated by two elements m and n and the first problem to solve is
to describe M-graded algebras A over a field k generated in these degrees m and n (see
Problem 5.9). This is done associating with A an invariant g, € N (see Theorem 5.31)
and this solution also suggests how to proceed for the next problem, that is, find the
sequence £ of Problem 5.1.

When M is any finite abelian group, it turns out that the extremal rays £ for M
such that he = 2 correspond to particular sequences of the form x = (r, o, N, g, ¢), where
r,a, N,GeN and ¢ is a surjective map from M to a group M,, y generated by two ele-
ments (see Definition 5.6). The sequence of smooth extremal rays “needed” to describe
the substack {h < 2} is composed by the “old” rays (£"),c4,, and by these new rays. Finally,
the smooth sequences in the family ® of Problem 5.1 will all be given by elements of the
dual basis of particular Z-basis of K (see Lemma 5.34).

In the last subsection, we will see (Theorem 5.55) that the D(M)-covers of
a locally noetherian and locally factorial scheme with no isolated points and with
(char X, |M|) = 1 whose total space is normal crossing in codimension 1 can be described

in the spirit of classification Theorem 4.42 and extending this result.

Notation 5.2. If m € M, we will denote by o(m) the order of m in the group M. O

5.1 Good sequences

In this subsection, we provide some general technical results in order to work with M-
graded algebras over local rings. So we will consider given a local ring D, a sequence m =
my,...,my, €M and C € D(M)-Cov(D) generated in degrees m,, ..., m,. Since Pic(D) =0

for any ue M we have C, >~ D. Given ue M, we will call v, a generator of C, and we will
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also use the abbreviation v; = vy,,. Moreover, if A= (4, ..., 4;) € N we will also write
A__ A A
VE=vp

Definition 5.3. A sequence for ue M is a sequence A € N" such that Aym, +---+ A m, =
u. Such a sequence will be called good if the map C;?ll1 R - ® C;,‘;; —> C, is surjective, that

is, v4 generates C,. If r = 2, we will talk about pairs instead of sequences. O

Remark 5.4. Any ue M admits a good sequence since, otherwise, we will have C, =
(Dlvy, ..., v, )y SmpCy. If A is a good sequence and B <A, then also B is a good

sequence. (]

Lemma 5.5. Let A and B be two sequences for some element of M and assume that A
is good. Set E =min(4, B) = (min(4,, By), ..., min(4,, B,;)) and take A € D. Then

VB == vB E = A E [l
Proof. Clearly, we have vE(vE~E — Jv4-£) = 0. On the other hand, since A — E is a good
sequence, there exists u € D such that v2~E = yv2-£, Since A is a good sequence, substi-

tuting we get v4(u —A) =0= = A. [ |

5.2 M-graded algebras generated in two degrees

Definition 5.6. Given 0 <« < N and r > 0, we set
Moy =Z%/((r, —), (0, N)). O
Proposition 5.7. A finite abelian group M with two marked elements m, ne€ M generat-

ing it is canonically isomorphic to (M, v, €1, &) where r =min{s > 0|sm e (n)}, rm =an
and N = o(n). Moreover, we have: |M| = Nr, o(m) =rN/(«, N) and

mn#0andm#n<= N>1 and (r>1ora>1). O
Proof. We have
2 (_Ta 1?7) 2 r 0
0— Z° —57Z° —> Moy —> 0 exact = | My, v| = |det =rN
—a N
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and clearly e; and e, generate M. Moreover, M, , n/{€;) ~7Z/rZ and therefore r is the
minimum such that re; € (e;). Finally, it is easy to check that N = o(e;). If now M, r, o, and
N are as in the statement, there exists a unique map M, , y —> M sending e;, e, to m, n.
This map is an isomorphism since it is clearly surjective and |M| = o(m)o(n)/|{m) N (n)| =

o(n)r = | M., n|. The last equivalence in the statement is now easy to prove. |

Notation 5.8. In this subsection, we will fix a finite abelian group M generated by two
elements 0 # m, ne M such that m # n. Up to isomorphism, this means M = M, , y with
m=e;, n=e; and with the conditions0<a <N, r>0,N>1,(r>1ora>1).

We will write d; the only integer 0 < d; < N such that grm + d;n=0, for g € Z, or,
equivalently, d; = —qa mod (IV). O

Problem 5.9. Let k be a field. We want to describe, up to isomorphism, algebras
AeD(M)-Cov(k) such that A is generated in degrees m,n and Hu/x=0. Thanks to
Corollary 4.30, this is equivalent to asking for an algebra A such that Hs/x =0 and

{le M|hgry =1} S {m,n}.
The solution of this problem is contained in Theorem 5.31. O
In this subsection, we will fix an algebra A as in Problem 5.9, we will consider
given a graded basis {v;};cy of A and we will denote by v the associated multiplication.
Note that Ha/x =0 means vy, v, ¢ A",

Definition 5.10. Define

z=min{h>0|3i e N, A € k such that v/, = A0, and hm =in},
x=min{h>0|3i e N, u € k such that vﬁ = /win and hn=im}.
Denote by 0<y<o(n) and 0 <w < o(m) the elements such that zm = yn, xn=wm, by

A, u € kthe elements such that vZ = Av}, v¥ = pv¥, with the convention that A =0 if v, =0

and p =0 if v}y, =0. Finally, set g =z/r and define the map of sets

{O,l,...,z—l}L>{0,1,...,o(n)}

¢t min{de N | v5,ve =0}
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We will also write Ga, Za, Xa, Ya, Wa, Aa, La, and f if necessary. O
We will see that A is uniquely determined by g and A up to isomorphism.

Lemma 5.11. Given [ € M, there exists a unique good pair (a,b) for [ with 0<a<z.
Moreover, 0 <b < f(a). O

Proof. Existence. We know that there exists a good pair (a,b) for [ and we can
assume that a is minimum. If a> z we can write v%v2 = Avfn‘zvzw. Therefore, A # 0 and
(@a—z b+ y) is a good pair for 1, contradicting the minimality of a. Finally, v4v2#0
means b < f(a).

Uniqueness. Let (a, b) and (@', ') be two good pairs for! and assumeO0 <a<dad <z
So there exists w € k* such that

a. b b __ a—a,b
mVUn == Uy =0V, "Up.

v& b = wv
If b>b' then d — a > zby definition of z, while if b < b’ then v, is invertible. [ |
Definition 5.12. Givenl € M, we will write the associated good pair as (&, §;) with & < z.
We will consider £ and § as maps ZM/(e)) —> Z and, if necessary, we will also write £4

and §4. O

Notation 5.13. Up to isomorphism, we can change the given basis to

v = v,‘% vfll
so that the multiplication ¢ is given by
vaup = v Tyl — o ppSarbylart — . (5.1)
O
Corollary 5.14. fis a decreasing function and
fO+-+ flz—1) =|M|. (5.2)
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Proof. If (a, b) is a pair such that 0 <a<zand 0<b < f(a) then v,‘%vﬁ #0, that is, (a, b)

is a good pair for am + bn. So

z—1

Y flO=l{@b|0<a<z 0<b< f@} =M -

c=0

Remark 5.15. The following pairs are good:
(z-1m:(z—1,0), x-—1n:(0,x—-1), zm=yn:(0,y), xn=wm:(w,0)

that is, vZ 1, X1 v}, v2 £ 0. In particular, f(0) > x, y+ 1 and f(c) > O for any c¢. Indeed

n

z—1 z—1—-a

_ a,b _ b _ _
Vi =g, = Vs, ‘=wv,=—a=z—-1, b=0,

Vi = wvd v = vE =) = a=0, b=y,
where (a, b) are good pairs for the given elements and, by symmetry, we get the result. O

Remark 5.16. If A#0 or u#0, then x=y, z=w and Apu = 1. Assume for example A # 0.
If y=0 then vZ, =1 #0 and so vy, is invertible. So y > 0 and, since v,’{:)ﬁlvfn, we also

have y > x. Now

0#£vZ =cv) =Apvl vy,

So £ #0 and (y — x, w) is a good pair. As before w > z and therefore

vl vl ?=1=y=x, w=x and ipu=1.

Lemma 5.17. Let a, b€ M. We have:

e Assume &, >0. If 8,5, <0 then &, >z 8, > —y. Moreover Y, #0 <= A #
0, ap =2, 84 = —y(= —x) and in this case Y, p = A.

e Assume &;p <0. Then &;p > —w, 8 > x. Moreover Y, #0 < pn#0,Ep=
—w(= —2), 8q» = x and in this case V¥ = u.

e Assume &, =0. Then we have ;5 =0 and ¥, =1 or §;» > 0o(n) and ¥, =0.0
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Proof. Set ¥ =1,,. We start with the case £, > 0. From (5.1), we get
Ur%zbviaﬁ-tsb — wvf{ub.

If 85 > 0 then vEebyler — ¢ and so ¥ =0 since vy, ¢ A*. If 8, <0 we instead have vEer =

wv;’s“’ and so &, > z. If —8,p < y then (0, —3,3) is good. So we can write
vt IAf e = =y =0
since v, is not invertible. If §,, < —y we have
0<Eup—2z<z O0=—8ap—y<fO0), (Eap—2DM=(=8ap— YN V5 “h=1pv, Y

and so both (£, — z,0) and (0, —8,, — y) are good pair for the same element of M. There-
fore, we must have £,, =2z, §,p = —y and ¥ = A.

Now assume &, =0. If §;5 <0 then vrfa‘“’w =1 which is impossible. So 8,5 > 0. If
82 =0 clearly v = 1. If 655 > 0 then vf{"b = and so ¥ =0 and 8, > o(n).

Finally assume &, < 0. From (5.1) we get

Sa+3p _ —&a.b,,0a+b
VTt = v, P upatt,

. . . . 5 _€ .
We must have §,; > 0 since vy, is not invertible. So v;** = Yvy, “* and 8, > %, from which

S, b—X w o __ —&, b
VR vy, = v, 0.

Note that, since 0 < —&, < &b < 2, (—E4p, 0) is a good pair. If w > —&, then ¥ =0. So

assume w < —&,p. Arguing as above, we must have 8, = x, £,p = —w and ¥ = u. |

Lemma 5.18. Define

A =Ks, t1/(s% st/ for 0 < c < 2).

Then A’ € D(M)-Cov(k) with graduation degs=m, degt=n and it satisfies the requests

of Problem 5.9, that is, A’ is generated in degrees m, nand Hy,x = 0. Moreover, we have

Gu=0a za=2za ya=ya EX=E4 §4=8% Ax=pa=0, fa=fa 0

ST0Z ‘62 A%enuer UOesId Ip PMS 116p eISIBAIIN T8 /BI0SeUINO[PIOXO UIWY//:dHY WO papeojumoq


http://imrn.oxfordjournals.org/

60 F. Tonini

Proof. Clearly, the elements s¢td for 0<c<z 0<d< f(c) generates A’ as a k-space.
Since they are Zi;(l) f(c) =|M]| and they all have different degrees, it is enough to prove
that any of them are non-zero. So let (¢, d) a pair as always. It is enough to show that
B =kKIs, t]/(s¢*!, t9F1) — A'/(s¢*!, t?*1) is an isomorphism. But ¢ < z implies that s*=0
in B. If ¢ <c then s°tf©© =0 in B and finally if ¢ >c then d + 1 < f(¢) < f(c) and so
s°tf© =01in B.

The algebra A’ is clearly generated in degrees m, nand Hy,x = 0 since s? = t/© =
0 and z, f(0) > 0. Moreover s* = 0tY implies that Z = z4 < z. Assume by contradiction z <
z. From 0 # s = 1'tY we know that t¥ # 0 so that y < f(0). Therefore, (Eym, 87m) = (Z, 0) =
(0, y') and so Z =0, which is a contradiction. Then Z =z, yy =y = y. Also s?=0tY and
t¥ #0 imply Ao = 0 and, thanks to Remark 5.16, u o = 0. Finally, by construction, we also
have £4 =&, 84 =5 and fu = f. [ |

Lemma 5.19. We have
dy = max d. -
1=q<q
Proof. Thanks to Lemma 5.18, we can assume A =0 and, therefore, ©=0. So vZ=0,
v¥~1 -£0 and v}, # 0 imply y < x= f(0). Let 1 <q < g and [ = gr. We have (&, &) = (gr, 0). If
N — d; < x= f(0) then we will also have (&, §;) = (0, N — d;) and so g =0, which is not the
case.SON—-d;>x>y=N—-d; = d; < d;. |

Lemma 5.20. Define g as the only integers 0 < g < g such that

% = olgqlgq %

If =0 we have d; <x= f(0) and

x if0<c<gr,
flo= o O
d; ifgr<c<z

Proof. We first want to prove that f(c) =min(x, d; for 0 < gr <c). Clearly, we have the
inequality < since v} = vfnrvzq =0. Set d= f(c) and let (a, b) a good pair for cm + dn, so
that v%,ve = 0v% v2. We cannot have b > d since otherwise v¢, = 0 implies ¢ > z. If a > ¢ then
v,‘f:O and so d= f(c) > x. Conversely, if a<cthen0<c—a=qgr<c<zand 0<d-b=

dg =d= f(0).
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We are now ready to prove the expression of f. Note that the pairs (qr,d; — 1),
with 0 < g < g, are all the possible pairs for —n. So there exists a unique 0 < g < g such
that (gr, d; — 1) is good. In particular, if 0 < q # g < g we have an expression

~ dy—1
v?,fvgq_l =Ov§nv§7_1 = <4 = w =0 = d=x
q>q = d;>dj.

Since vzﬁ_l #0 we must have d; <x. This shows that §=4 and the expression of f.
Finally, if g > 1 then § > 0 and so d; <x= f(0) since f is a decreasing function. If g=1
theng=0andso N=d;= f(0) <x<N. |

Definition 5.21. We will continue to use notation from Lemma 5.20 for g and we will

also write g4 if necessary. |

5.3 The invariant q

Lemma 5.22. Let 8, N €N, with N > 1, and define dg =dy, for q € Z, the only integer 0 <
dy; < N such that d; = g8 mod N. Set

25 y={0<qg=<o0(B,Z/NZ)=N/(N, B) | dy < d, for any 0 < q' <q},

set gy, for the nth element of it and denote by 0 < g < g, the only number such that

, = min d,.

di 0§q<Qnd1
Then we have relations gN + g.d; — 4d;, =N and, if n>1, go=qs1+ G, dj, =d;, , + d;
and d,, , +d; > Nforq<g. O

Proof. First of all note that all is defined also in the extremal case 8 =0. In this case,
g v ={1}. Assume first n>1. Set §=¢, — g1 so that d;,, =d,, , +d; since d;, >d,, ,.
Assume by contradiction that g # §. Since g < g, we have d; < d;. Let also ¢’ =g, — G and,

as above, we can write d;, = dy + d;. Now

d‘ln_d(fqu<d¢~l=d%_d1n71:>d1n71 <dl“
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Since gn_1 € £2g, 5y, we must have q’ > g,_;, which is a contradiction because otherwise,
being q’' < g,, we must have ¢’ = g,. So § = . For the last relation note that, since g, is the
first g > g, such that d; > d,, ,, then g is the first such that 4, , + d; < N.

Now consider the first relation. We need to do induction on all the 8. So we will

n—1/

write dg and qfi in order to remember that those numbers depend on to 8. The induction
statement on 1 < q < N is: for any 0 <8 < NV and for any n such that g/ < g the required
formula holds. The base step is g=1. In this case, we have n=1, q. =1, §=0, dg=N
and the formula can be proved directly. For the induction step, we can assume g > 1
and n> 1. We will write Qﬁ for the g associated to n and B. First of all note that, by the

relations proved above, we can write

QN+ gidl, — Ghd, =GN +qndy — ahd,

n—1

and so we have to prove that the second member equals N. If g} < qﬁ_l then Qﬁ_l =§/ and
the formula is true by induction on g — 1 > qﬁ,l. So assume (}5 > qu and set a = N — B.

Clearly, we will have
o=o0(a,Z/NZ)=0(B,Z/NZ) and df +d;=N forany0<gq<o.
Moreover,
dgﬁ <dgforany0<q<q,f=>d2‘£ >d; forany 0 <q < g} =3l s.t. g =g}
and
dsﬁ,l >df foranyO<q<q5:>d;‘5_1 <d forany0<qg<q'=4 =q¢'=q ,.

Using induction on g = 4 < qf <q, we can finally write

N=GN+qdy —gidy =q, N +3hdy —q,.,d,

= qrtj—lN + Qﬁ(N - djﬂil) - qﬁ—l(N - d:;g) = QfN + qﬁ—ldgﬁ - qufﬂil'
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We continue to keep notation from Notation 5.8. With d; we will always mean

déV*“ as in Lemma 5.22. Lemma 5.19 can be restated as follows:
Proposition 5.23. Let A be an algebra as in Problem 5.9. Then G4 € 2y_o.x- O

So given an algebra A as in Problem 5.9, we can associate to it the number g, €
2y_q n. Conversely, we will see that any g € 2y_, y admits an algebra A as in Problem 5.9
such that g = ga. It turns out that all the objects za, ya, fa, £4, 84, Ga and, if A4 =0, xg,
w4 associated to A only depend on gs. Therefore, in this subsection, given g € 2y_, n, We
will see how to define such objects independently from an algebra A.

In this subsection, we will consider given an element g € 2y_q -

Definition 5.24. Set g for the only integer 0 < g < g such that d; =ming-4-3d;, ' =g — g,
z=qr,y=N — g,

N-—-d, if g>1, gr if g>1, x if 0<c<gr
X = w = f(C)=
N if g=1, 0 if g=1, dy if gr<c<z
We will also write g, qé, Z3, X3, f3, V3, and wg if necessary. O

Remark 5.25. Using notation from Lemma 5.22, we have g =g, for some n and, if
n >1, that is, g > 1, g,-1 =q'. Note that zm = yn, wm = xn, y < x, w < z. Moreover, from
Lemma 5.22 and from a direct computation if g =1, we obtain zx — yw = |M|. Finally, if

G > 1 one has relations gr=z—wand dy=x—y. O

Lemma 5.26. We have that:
(1) f1is a decreasing function and Zi;(l) flo)=|My|;
(2) any element t € M can be uniquely written as

t=Am+Bn with 0<A<z0<B < f(A). 0

Proof. (1) If g=1 it is enough to note that =0, dy = N and Nr=|M|. So assume G > 1.
We have x= N — dy > d; since d; =dy + d; and

z—1

Z flo=qrx+ (qr—qndy=(z—w)x+wx—y) =zx—wy=|M|.

c=0
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(2) First of all note that the expressions of the form Am + Bn with 0<
A<z 0<B< f(A) are Zf;cl, f(c)=|M]|. So it is enough to prove that they are all
distinct. Assume that we have expressions Am + Bn=A'm + B'n with 0<A' <A<z,
0<B < f(A),0<B < f(A).

A =B’ =0, that is, Am + Bn=0. If A=0 then B =0 since f(0)=x<N.If A> 0,
we can write A=qr for some 0 <q < g. In particular, g>1 and B=d; < f(4). If g<¢
then f(A)=x=N — dy > d; contradicting Lemma 5.22, while if g > g then f(4) =d; <d,.

A' =B =0, that is, Am = B'n. If A=0 then B’ =0 as above. If A> 0 we can write
A=qr for some 0 <q <@g. Again g > 1. In particular, B =N - d; < f(0)=x=N — dy and
so dy < dg, while dy =maxg.q.5d;.

General case. We can write (A — A)m + Bn= B’'nand we can reduce the problem
to the previous cases since if B> B’ then B— B’ < B < f(4) < f(A— A’), while if B < B’
then B’ — B < B' < f(4) < f(0). [

Definition 5.27. Given [ € M we set (&, §;) the unique pair for ! such that 0 <&, <2z, 0 <
8: < f(&) and we will consider &£, § as maps ZM/(ey) —> Z. We will also write £2 and §9 if

necessary. g

Proposition 5.28. Let A be an algebra as in Problem 5.9. Then

Za=7g, VA=VYan Qa=0q. EA=E¥, §4=3%, fa=f,

and, if A, =0, then xy =Xx;,, wa = wg,. O

Proof. Set §=qa. Then z, =qr =2z; and zym = yan= yznimplies yo = y;5. Also Ga =gz by
definition. Taking into account Lemma 5.18 we can now assume A4 = 0. We claim that all
the remaining equalities follow from x4 = x;. Indeed, clearly ws = wg. Also by definition
of f; and thanks to Lemma 5.20 we will have f, = f; and therefore £4=£4, §4 = §9, that
conclude the proof.

We now show that x4 =x;. If g =1 then § =0 and so, from Lemma 5.20, we have

d; =N =x4=x.1f g> 1, by definition of f; and thanks to Lemmas 5.26 and 5.20, we can

write
Zq*l Za—1
|M| =" f3(0) =rdqXq + (2 — Qqr)dy, = Y fa(0) =Tqaxa + (24 — 4ar)d,
c=0 c=0

and so x4 = Xj. [ |
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Definition 5.29. Define the M-graded Zl[a, b]-algebra
Al =7]a, blls, tl/(s? — at?, t* — bs",s7t% — a’b) where y=

with M-graduation degs=m, degt=n. Given a ring homomorphism Zl[a, b] — C, that

is elements ag, by € C, we will also write Ago.bo = A% ®gzqp C. O

Proposition 5.30. A% e D(M)-Cov(Zla, bl), it is generated in degrees m,n and {vy; =
s€t") ey is an M-graded basis for it. O

Proof. We have to prove that, for any I € M, (A9); = Zla, blv; and we can check this over
a field k, that is, considering A= Aqu with a, b € k. We first consider the case a, b € k*, so
that s, t € A*. Let 7 : Z? — M the map such that w(e;) =m, 7(e;) =n. The set T ={(a, b) €
Kern | s“® € k*} is a subgroup of Kerr such that (z, —y), (—w, x) € T. Since det ( %, ') =
zx — wy=|M| we can conclude that T = Ker . Therefore, v; generate (A9); since for any
¢, de N we have 5t%/vgniqn € k* and 0 # vy € A*.

Now assume that a=0. If g=1 then §=w=0, dyg=x=N and so A=
kls, t1/(s?, t¥ — b) satisfies the requests. If g>1 it is easy to see that v, generates
A;. On the other hand, dimy A=[{(4,B)|0<A<z0<B<x, A<gGror B<dy}|=2zx— (z—
qr)(x — dy) = zx — yw = |M|. The case b=0 is similar. [ |

Theorem 5.31. Let kbe a field. If § € 2y_, y and 1 € k, with A =0 if §= N/(«, N), then
Ag ) =kls, tl/(s® — At 49, sq‘?rtd%)

is an algebra as in Problem 5.9 with g4,, =g and A4,, = 1. Conversely, if Ais an algebra
as in Problem 5.9 then s € 2y_on, Aa €k, Aa=0if Ga=N/(a, N) and A~ Az, ,,. O

Proof. Consider A= A;,, which is just AZ,O. Clearly, t ¢ A*. On the other hand, s ¢ A*
since y=0 <= z=o0(m) <= g = N/(«, N). Therefore, Hy/x =0 and A is an algebra as in
Problem 5.9. Moreover, clearly G4 < g. If by contradiction this inequality is strict, we will
have a relation s9" = wt¥ with 0 <q < §G. Since s7 = vgrm 7 0 we will have that t” #0 and
Yy < x, a contradiction thanks to Lemma 5.26. In particular, A = X 4.

Now let A be as in Problem 5.9 and set §=Ga, A =*4. We already know that

g € 2y_q. v (see Proposition 5.23). We claim that the map Az, — Asendings, tto vy, v, is
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well defined and so an isomorphism. Indeed, we have vZ, = Av}, by definition and, thanks

to Proposition 5.28, we have v?nrvf? =0since d; = fa(gr) and v} = 0 since f4(0) = x. Finally,

if = N/(a, N) then y= ys =0 and z= o(m), so that A, = v2™ =0. [ |

Corollary 5.32. If k is an algebraically closed field then, up to graded isomorphism,
the algebras as in Problem 5.9 are exactly A;; if g € 2y_on — {N/(a, N)} and Az if G €
2N—qn- O

Proof. Clearly the above algebras cannot be isomorphic. Conversely, if A € k* (and g <
N/(a, N)) the transformation t —> /At with y= ¥ Yields an isomorphism Az, ~ A4;:. W
5.4 Smooth extremal rays for h< 2

In this subsection, we continue to keep notation from Notation 5.8, that is, M= M, i

and we will consider given an element g € 2y_, .

Remark 5.33. We have z=1 < g=r=1 and x=1 <= G= N. Indeed the first rela-
tion is clear, while for the second one note that, by definition of x and since N > 1, we
havex:l<=>dq/=N—1(=>Q=N/(a,N),(a,N)=l. O

Lemma 5.34. The vectors of K

Vem.dns O0<cCc<z O0<d< f(0),
Vmim,» O<i<z—1,
Unjn, O0<j<x-—1, (5.3)
Um,z—1ym if z>1,
Unx—1n if x>1,
form a basis of K. Assume gr=#1 and g # N, that is, z, x > 1, and denote by A and A

the last two terms of the dual basis of (5.3). Then A, A € Kj_ and they form a smooth
sequence. Moreover, A = 1/|M|(x£ + wé), A=1/|M|(y€ + z8) and

0 if g=1, 0 if §=N/(a N),
Am,fm = Aann: 1, An,fn = Am,fm =
1 otherwise, 1 otherwise.
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Proof. Note that we cannot have z=x=1 since otherwise |M|= f(0) =x=1, that is,

M = 0. The vectors of (5.3) are at most rk K since

z—1 z—1
dD(f@-D+z—2+x-2+2=) (f©—-1)+z—1=|M —z+z—1=|M| - 1=rkK.

c=1 c=0

If z=1 then (5.3) iS vpp, - .., Unx—1)n- SO X=|M| = N, that is, n generates M, and (5.3) is a
base of K. In the same way, if x=1, then m generates M and (5.3) is a base of K.

So we can assume that z, x > 1. The functions £ and § define a map Z"/(ep) &5
Z2. Denote by K’ the subgroup of K generated by the vectors in (5.3), except the last
two lines. We claim that (€, §);x = 0. This follows by a direct computation just observing
that if we have an expression Am + Bn as in Lemma 5.26, (2) then (&, §)(€am+pn) = (4, B).

Consider the diagram

I
o (e1)=Vm,(z—1)m, 0 (€2)=Vn,(x-1)n

o (€,8)
72— K/K' — ZM/(ey, K') —— 72 —— ZM/(ey. K') —— M

U (e1)=em, Tt(e2)=en ple)=l

We have (&, 8)(Vm,z—1ym) = (2, —y) since y<x = f(0) and (&, §)(n,x—1)n) = (—w, X) since
w <2z So |detU|=2zx — yw=|M| and, since 7w o U =0, U is an isomorphism onto Kers.
Moreover, ! = (€, §) since g = &e,, + 816, mod K'. It follows that ¢ is an isomorphism
and so (5.3) is a basis of K.

Consider now the second part of the statement. Clearly, A, A € (£, §)g. Therefore,

we have

A(Vm (2— =l=az—yb a=x/|M|,
A=a£+b6, (m,(z l)m) v — /| |
A(Vn,(x—1)n) =0=xb — aw b=w/|M|

and the analogous relation for A follows in the same way. Now note that, thanks to
Theorem 5.31 and Proposition 5.28, we have that £ =£4,5 =64 for an algebra A as in
Problem 5.9 with g4 =g, A4 =0 and sharing the same invariants of g. So we can apply
Lemma 5.17. We want to prove that A, A€ K} so that they form a smooth sequence
by construction. Assume first that £, > 0. Clearly, Agp, Agp >0 if 8,5 > 0. On the other

hand, if 8,5 < 0 we know that &, > zand 8,5 > —y and so

|IM|Agp=xEqp + Wap > Xz — yw=|M| and |M|Agp=yEap+ Z8ap>yz— zy=0.
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The other cases follows in the same way. It remains to prove the last relations. Since
—n=grm+ (d; — 1)n, we have &, _,=qgr and 6, _,=d;. Using the relation zx — wy=|M|
the values of A, _y,, A, _y, can be checked by a direct computation. Similarly, considering
the relations —-m=(Gr—-1)m+dnifl1<q, —-m=r -1)ym+ (N —-a)nif g=1 and « #0,

—m=(r — 1)m if « =0, we can compute the values of A, _n, and Ay —m. |

Proposition 5.35. The multiplication of A? (see Definition 5.29) with respect to the
basis v = v&v? is: af* if §= N, where ¢ : M —> Z/|M|Z, ¢(m)=1; b¢" if gr=1, where
n:M—>7Z/|M|Z, ¢$(m)=1; a’b? if gr#1, G+ N, where A and A are the rays defined in
Lemma 5.34. g

Proof. In the proof of Proposition 5.30, we have seen that if x=1 (g = N), then M = (m)
and A% =7Zla, bllsl/(s™! — a), while if z=1 (gr =1) then M = (n) and A% = Z|a, bllt]/ (M —
b). So we can assume x, z> 1. Let B the D(M)-cover over Zla, b] given by multiplication
¥ = a’b? and denote by {w;};cr a graded basis (inducing v). By definition of A and A, we

have w; = wf,{w‘f{ for any l € M and ¥, z—1)m = @, ¥n,x—1)n = b. Therefore,
Wl = Om®G—1)ym = AWzn = AWyn = AWY, W) = OpW(x—1)n = bwxn = bwym = by,

and, checking both cases =1 and g > 1, 0T = w_pwn = atrrbdnn = @’b. In particular,

we have an isomorphism A9 — B sending vy, vy t0 @p, ©p. |

Notation 5.36. From now on M will be any finite abelian group. If ¢ : M — M, , y is a
surjective map, r, o, N satisfy the conditions of Notation 5.8, § € 2y_oy Withgr#1,g# N
then we set A"*N.3% = A o ¢, AT*N3% = Ao ¢,, where A and A are the rays defined in
Lemma 5.34 with respect to r, o, N, q. If ¢ =id we will omit it. O

Definition 5.37. Set
O0<a<N,r>0,N>1, (r>1lora=>1)
Z‘MZ (r7a7 N5 Q7¢) QGQN_Q,N, qr;é 1,(}0!.,%1 IIlOdN

G#N/(a, N), ¢ : M —> M,, y surjective

and A*: ¥y —> {smooth extremal rays of M}. O
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Remark 5.38. Since e, and e, generate M, , y, there exist unique r¥,«", and N with
an isomorphism (—)" : M, v —> M,v 4v yv sending e, e; to ey, e;. One can check that r¥ =
(a, N), NY =rN/(«, N) and o¥ = gr, where g is the only integer 0 < g < N/(«, N) such that
go = (o, N) mod N.

If A is an algebra as in Problem 5.9 for M, , y, then, through (—)Y, A can be
thought of as a M ,v yv-cover, that we will denote by AY, and AY is an algebra as in
Problem 5.9 with respect to My ov v, With Gav =xa/(et, N), Aav = ua. We can define a
bijection (—)Y: 2y_on — {N/(N, @)} — 2nv_ov.nv — {NY/(@¥, NY)} in the following way.
Given g take an algebra A as in Problem 5.9 for M, y with ga=g and 1, # 0, which
exists thanks to Theorem 5.31, and set §* = gav. Taking into account Remark 5.16 and
Proposition 5.28, §¥ = y;/(a, N) since x4 = ya = y; and (—)" is well defined and bijective
since Agv =g :k;‘l. Note that the condition go =1 mod N is equivalent to r¥ =1 and
g"=1.

Finally, if ¢ : M — M, , y is a surjective morphism then we set ¢V =(—)" o ¢:
M —> M, o yv. Note that in any case we have the relation (—)"" =id. In particular, since
1Y =a/rY,q=«a"/ris the dual of 1 € 2pv_gv pv. O

Proposition 5.39. Letr, «, and N be as in Notation 5.8, g € 2y_, v with gr# 1, g # N and
¢ : M —> M., v be a surjective map. Set x = (r, o, N, g, ¢). Then

(1) g=N/(a,N): Ax=E5, & :Mi> Myn —> Myyn/(m)~(n)~7Z/(a, N)Z; qo=
1 mod N: AX = &%, 0 : M~ My v = (e1);

2) §g=1: AT =E° w: M-2 Myony —> Mypon/(n) = (m) ~Z/rZ;
wo=1: AX=E°0: M -2 Moy = (€);

(3) g>1andwg#1: AX = AT*N.G-8¢,

In particular, in the first two cases we have hy« = hax = 1. O

Proof. We can assume M = M,, y and ¢ = id. The algebra associated to 04" and 0%" are,
respectively, C5 = kls, t]/(s%, t* — s¥, s7t% — 0V) and By = kls, tl/(s? — t7, t*, s7"t%) by Propo-
sition 5.35.

(1) If g=N/(a, N), then z=o0(m), y=0, dy=(a,N) and so By =Kkls, t]/(s°™ —
1, t@M), the algebra associated to 0", If Go =1 mod N then r¥ = (o, N) =1 and g=a"/r,
that is, ¢ = 1. So y=1 and B; ~ kis]/(s™M), the algebra associated to 0°".

(2)1f g=1,thenz=r,g=w=0, x=d; =N and so C, =kls, tI(t" — 1, s"), the alge-
bra associated to 0°”. If w=1 then g > 1 and so C; = kltl/(t™), the algebra associated
to 05,
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(3) If g > 1 then H¢, =0 and so Cj; is an algebra as in Problem 5.9. An easy com-
putation shows that z;, = w > 1, so that Gc, = ¢ — g and A; = 1. Therefore, A = AT*N.a=4
by Theorem 5.31. |

Proposition 5.40. X, = ¥y and we have a bijection

A*: Yy /(=) —> {smooth extremal rays £ with hg = 2}. U

Proof. X} C Xy since o # 1mod N is equivalent to g'rY # 1. Now, let £ be a smooth
extremal ray such that hg =2 and A the associated algebra over some field k. We can
assume Hy x = Hg = 0. The relation he = 2 means that there exist 0 # m, ne M, m # nsuch
that A is generated in degrees m, n. So M = M, y as in Notation 5.8 and A is an algebra
as in Problem 5.9. By Theorem 5.31 and Proposition 5.39 we can conclude that there
exist x € Xy such that £ = AX,

Now let x = (r, @, N, @, ¢) € X'y. We have to prove that hyx =2 and, since M, y # 0,
assume by contradiction that hax = 1. We can assume M = M,, y and ¢ =id. Note that
hax =1 means that the associated algebra B is generated in degree m or n. If A is an
algebra as in Problem 5.9, then A is generated in degree n if and only if z=1, which
means gr=1. So B is generated in degree m, that is, BY is generated in degree e; €
M, o nv, which is equivalent to 1 = zgv =G r¥ =1, and, as we have seen, to go = 1 mod N.

Now let x'=(r, o/, N, q, ¢') € ¥y such that £ = A¥ = AX'. Again we can assume
Hg =0 and take B, B’ the algebras associated, respectively, to x, x’. By definition of A,,
¢, ¢' are isomorphisms. If g=¢' 0 ¢~ : My, y —> M, v then we have a graded isomor-
phism p: B —> B’ such that p(B;) = B;(l). Therefore, g({e;, e2}) = {e1, 2}, that is, g=1id or
g=(—)V. It is now easy to show that x' =y or ' = x". |

Notation 5.41. We set ®y={¢:M— Z/IZ|l> 1, surjective}, O ={E%}yca, U
{(AX, A%)}
O<a<N,r>0,r>lora>1, GgeR2y_,n satisfy gr#1, g#N and ¢: M — M,, y is a

yesy, where Yu is the set of sequences (1, a, N, G, ¢) where r,a, N € N satisfy

surjective map. Finally, set £ = (£, A%)peon. yeSm/(—) - O

Theorem 5.42. Let M be a finite abelian group. Then

m=2y=| U 27 Ul U zx*

pedy (A,4)e@?
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In particular {h <2} C Z3". Moreover, 7g : F¢ —> D(M)-Cov induces an equivalence of

categories

V(zg) NN V(zer) £ 0 iff

r=1or (r=2and (£, £?) € ©2) =

{(é, M,z i) € Fe

}:ngl(hgz)% (h<2).

Proof. The expression of {h < 2} follows from Theorem 5.31 and Proposition 5.35. Tak-
ing into account Proposition 5.40, the last part instead follows from Theorem 3.44 taking
0 =062, |

In [13], the authors prove that the toric Hilbert schemes associated to a polyno-
mial algebra in two variables are smooth and irreducible. The same result is true more
generally for multigraded Hilbert schemes, as proved later in [14]. Here, we obtain an

alternative proof in the particular case of equivariant Hilbert schemes:

Corollary 5.43. If M is a finite abelian group and m, ne€ M then M-Hilb™" is smooth

and irreducible. O

Proof. Taking into account the diagram in Remark 4.10 it is enough to note that

D(M)-Cov™™ C {h< 2} C Z5™, [ |
Proposition 5.44. X3, =/ if and only if M~ (Z/27)" or M ~ (Z/3Z)". O

Proof. For the only if, note that if ¢ : M — Z/1Z with | > 3 is surjective, then, taking
m=1l—-1,n=1€Z/1Z, we have Z/I1Z~ M, ;_;;and (1,1 —1,1,2,¢) € Xy.

For the converse set M = (Z/pZ)!, where p=2, 3 and, by contradiction, assume
that we have (r,«o, N, g, ¢) € 3. In particular, ¢ is a surjective map M — M, y. If
e, e € M., v are Fp-independent then M.,y = (€1) x (e2), « =0, 2y_on = {1} and there-
fore g=1=N/(a, N), which implies that x ¢ ¥y. On the other hand, if M, ,>~Z/pZ,
the only extremal rays for Z/pZ are €9 and, if p=3, £7¢ since K,z,,z ~NP! by
Proposition 4.18. u

Theorem 5.45. Let M be a finite abelian group and X be a locally noetherian and locally

factorial scheme. Consider the full subcategories

codimyxV(z,)N---NV(zg,)>2

C2Z=1(L, M, z?8) eFe(X) . .
O R SN i gsc o2 st gn, .. EhCs

}st(X)
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and
D2={vy L X e DMD-Cov(X) | hy(p) <2V pe X with codim,X < 1} € D(M)-Cov(X).
Then ¢ induces an equivalence of categories
Ci=n:' (D) — DI L

Proof. Apply Theorem 3.52 with ® = ©2. [ |

Remark 5.46. In general {h < 3} does not belong to the smooth locus on Zj,;. For exam-
ple, if M =7/47, D(M)-Cov = {h < 3} is integral but not smooth by Proposition 4.18 and
Remark 4.20. U

5.5 Normal crossing in codimension 1

In this subsection, we want to describe, in the spirit of classification Theorem 4.42,
covers of a locally noetherian and locally factorial scheme with no isolated points and

with (char X, |M|) = 1 whose total space is normal crossing in codimension 1.

Definition 5.47. A scheme X is normal crossing in codimension 1 if for any codimen-
sion 1 point pe X there exists a local and etale map (’A)X,p—> R, where R is k[x] or
k[s, t]/(st) for some field k and @X,p denote the completion of Oy . O

Remark 5.48. If X is locally of finite type over a perfect field k, one can show
that the above condition is equivalent to having an open subset U C X such that
codimyX — U > 2 and there exists an etale coverings {U; — U} with etale maps U; —

Specklx, ..., x,1/(x1 - - - X,) for any i. Anyway, we will not use this property. O

Notation 5.49. In this subsection, we will consider a field k and we will set A=
k[s, t]/(st). Given an element & € Autgk[x] we will write & = £(x) so that, if p € k[x] then
E(p)(x) = p(&x). We will call I € Autgk[s, t] the unique map such that I(s)=t, I(t) =s.
Given B € k* we will denote by B the automorphism of k[x] such that B, = Bx.

Finally, given fek[x,...,x,] and geklx, ..., %, the notation f=g+--- will

mean f=gmod (x, ..., x)%89+1 O
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The first problem to deal with is to describe the action on A of a finite group M
and check when A is a D(M)-cover over A®, assuming to have the |M|-roots of unity in k.

We start collecting some general facts about A.

Proposition 5.50. We have:

(1) A=k sk[s] & tk[t].

(2) Given f,ge A— {0} then fg=0if and only if f € sk[s], g € tk[t] or vice versa.

(3) Any automorphism in AutiA is of the form (&,7n) or I(§,n) where &, ne
Autik[x] and (&, n)(f(s, 1) = f(&s. no).

(4) If & € Autgk[x] has finite order then § = B where B is a root of unity in k. In
particular, if (¢, n) € Auti A has finite order then &£ = B,  =C where B and C
are roots of unity in k.

(5) Let fek[x] — {0}, B, C roots of unity in k. Then f(Bx)=C f(x) if and only if

C = B" for some r > 0 and, if we choose the minimum r, f e x"k[x°®]. O

Proof. (1) is straightforward and (2) follows easily expressing f and g as in (1). For (3)
note that if 6 € AutgA then 6(s)6(t) =0 and apply (2). Finally (4) and (5) can be shown
looking at the coefficients of &, and of f. |

Lemma 5.51. If M < AutyA is a finite subgroup containing only automorphisms of the
form (£, ) then AM ~ A, O

Proof. It is easy to show that AM~k[s? t’]/(s*t?)~ A, where a=Ilcm{i|3(A4, B) e
M s.t. ordA=1i} and b =1cm{i | 3(4, B) € M s.t. ordB =i}. |

Since we are interested in covers of regular in codimension 1 schemes (and A is

clearly not regular) we can focus on subgroups M < Aut;A containing some I (&, ).

Lemma 5.52. Let M < AutxA be a finite abelian group and assume that (chark, |M|) =1
and that there exists I (&, n) € M. Then, up to equivariant automorphisms, we have M =
(I(id, B)) or, if M is not cyclic, M= ((C, C)) x (I) where B and C are roots of unity and

o(C) is even. O

Proof. The existence of an element of the form I(£, ) in M implies that s and ¢ cannot

be homogeneous in m4/m?, that 2 | |M| and therefore that char k # 2.
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Applying the exact functor Homy! (m /m?%, —), we get that the surjection m, —
m,q/mlz4 has a k-linear and M-equivariant section. This means that there exists x, ye m4
such that m 4 = (x, y) and M acts on x and y with characters x and ¢. In this way, we get
an action of M on kX, Y] and an equivariant surjective map ¢ : k[ X, Y] — A. Moreover,
Ker¢ = (h), where h= fg and f; g € k[X, Y] are such that ¢(f) =s, ¢(g) =t. We can write
f=aX+bY+---,g=cX+dY+--- with ad— bc#0. Since ax+ by=s in m,/m? and s
is not homogeneous there, we have a, b # 0. Similarly, we get ¢, d# 0. In particular, up
to normalize f. g, and x we can assume b=c=d=1. Now h=aX?*+ (a+ )XY+ Y% +...
and applying Weierstrass preparation theorem [12, Theorem 9.2], there exists a unique
he (h) such that (h) = (h) and h=¥o(X) + ¥1(X)Y + Y2. The uniqueness of h and the M-

invariance of (h) yield the relations m(h) = n(m)?h,

m(Yo) = Yo(x (M) X) = n(m)*vo, m(¥1) = ¥1(x (M)X) = n(m)yn (5.4)

for any m € M. Moreover, h=uh where u € k[X, Y]" and, since the coefficient of Y? in
both h and h is 1, we also have x(0)=1. In particular, Yo=aX?+--- and ¢, = (a+ 1)
X +---andso (a+ 1)(x — ¢) =0Dby (5.4). Since s is not homogeneous in m4/m?, x #n and
a=—1. Since char k# 2 we can write h= (Y 4 v, /2)? — (¥'?/4 — y»o) = > — Z. Note that y’
and z’' are homogeneous thanks to (5.4). Moreover, by Hensel's lemma, we can write
7Z = X% + ... = X?q? for an homogeneous q € k[x] with g(0) = 1. So ¥’ = xq is homogeneous
and h= y? — x¥2. This means that we can assume s = x — y, t = x + y. In particular, x? = 2

and M acts on s and t as

- -~ — -
m(s) =L mis+ XLt moy =L mys+ L me.
2 2 2 2
Consider the exact sequence
0— H— M5 (—1,1y)—0. (5.5)

If M is cyclic, say M = (m), we have x (m) = —n(m) and so m = I(B, B), where B = (x (m) —
n(m))/2 is a root of unity. Up to normalize s, we can write m = I(id, B).

Now assume that M is not cyclic. The group H acts on s and ¢ with the charac-
ter xg = ¢{;g and this yields an injective homomorphism x5 : H — {roots of unity of k}.
So H ={(C, C)) for some root of unity C. The extension (5.5) corresponds to an element
of Ext!(Z/27, H) ~ H/2H that differs to the sequence 0 — H —> Z/20(C)Z —> {—1, 1}
—> 0. So H/2H ~7/2Z, o(C) is even and the sequence (5.5) splits. We can conclude that
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Table 1.
H m,nr, o, N,q B £
7.)27. 1,1,1,1,2,1 _Mzul 2&id
(U2 - 22)
k[Z][U, V]
(Z)27,)* (1,0),(0,1),2,0,2,1 % EPT 4 £PT
7.)217, x 7,27 k[Z]lU, v
[ 2 (1,0), (1.1).2,2,21, 1 (A0, Vi A222L1
I1>1 (U2 -v2, 74—z
k[Z][U, V]
7./4l7, 1,21+1,1,21+1,4l,2 ’ AL2+1,412
/ ’ +1.1 + 1,4, (U2 _ V2, V21+1 _ ZU, UVzl—l _ Z)
7217 11+1.2.2.11 k[Z][U, V] A2201
I>1o0dd ' U (U2 -V2, V!l -2

M={((C,C)) x (m), where m =I(D, D) for some root of unity D and o(m) = 2. Normaliz-

ing s we can write m=I(id, D) =1. [ |

Proposition 5.53. Let M < AutiAbe a finite abelian group such that (chark, |M|) =1 and
that there exists I(&,n) € M. Also assume that k contains the |M|-roots of unity. Then
AM ~ k[ 7], A€ D(M)-Cov(AM™) and only the following possibilities happen: there exists
a row of Table 1 such that M~ H is generated by m,n, H~ M,, y, A~ B as M-covers,
where deg U =m, deg V =n and A over A is given by multiplication z£. Moreover, all
the rays of the form A* in the table satisfy h,- = 2. (]

Proof. We can reduce the problem to the actions obtained in Lemma 5.52. We first con-
sider the cyclic case, that is, M = (I(id, B)) >~ Z/2l7Z where | = o(B). There exists E such
that E? = B. Given 0 <r < |M| = 2I, we want to compute A, ={ac A|I(id, B)a= E"a}. The
condition a=c+ f(s) + g(t) € A, holds if and only if a=0 when r> 0, f(t) = E"g(t) and
g(Bs) = E” f(s). Moreover, f(t) = E "g(Bt) = E~? f(Bt) = f(Bt) = B” f(t). If we denote by
3, the only integer such that 0 <§, <[ and §, =r mod [, we have that, up to constants, A"
is given by elements of the form E” f(s) + f(t) for fe X*k[X']. Call B=s'+ ! € Ay = AM
and v, = E"s + t, vg = 1. We claim that AM = Ay = k[B] and v, freely generates A, as an

Ay module. The first equality holds since 4 is a domain and we have relations

Za,ns”l +Zant"l :Zafn(sl + tl)”:Za,n,B”
n>1 n>1 n>1 n>1
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while the second claim come from the relation
E"s” (c+ h(s)) + t (c+ h(t)) = (E"s* + t)(c+ h(s) + h(t)) for he X'k[X]

and the fact that v, is not a zero divisor in A.

So AeD(M)-Cov(k[B]) and it is generated by vy = Es+t and vj;; = —Es+t and
soin degrees 1 andl + 1.Ifl =1, so that M~Z/2Z, B=1, E = —1 and v? = 2. This means
that A~ k[g]IU]/(U2 — B2) and its multiplication over k[8] is given by 2. This is the
first row. Assume [l > 1 and set m=1,n=1[0+ 1. Note that 0 #m # n and that M~ M, , i
for some r, o, N that we are going to compute.

I odd. We have r=a=2 and N=I[ since ({+1)=(2) CZ/2lZ. Consider g=
le2yn-o and the associated numbers are z=r=2,y=0=2,4=0,dy=x=N=I,
w=0. Since v{ =v/,; and v} ; = B, we will have Az A}, where i, u=1, B ek[f] (see
Definition 5.29) and therefore the multiplication is pA* o by Proposition 5.35. This is the
fifth row.

l even. We have r=1,a =1+ 1, N =2l since ({ + 1) =7Z/2lZ. Since dy =1l — 1 = -«
and d, =2l — 2= 2(—«) modulo 2] we can consider § =2 € 2y_, y. The associated num-
bers are z=y=2,4=1,dy=1-1,x=N—(d;j—dy)=l+1,w=1=xn=(+1)> mod 2L
Since v =1/, ,, v, = pv; and v¥ v%, = B, we will have A~ A2 whered, =1, 8 €k[f]
whose multiplication is g41#+12.2, This is the fourth row.

Now consider the case M= ((C, C)) x (I) with o(C) =1 even. Set B=s' + ¢, v; 0=
s+t and v;; =—s+t. Note that v.; is homogeneous of degree (r,i). Set m=(1,0),n=
(1, 1). They are generators of M and so M ~ M, , y for some r, «, N. We have N =o(n) =1,
r>1 since (n) # M and so r=2 since 2Zm=2n. If [ =2 we get « =0 and if [ > 2 we get
o =2. Choose g=1 so that the associated numbers are z=2,y=0,§=0,dyj=x=N=
I, w=0. As done above, it is easy to see that AM = k[g]. We first consider the case [ = 2.
Since v{,=p and v{, =, we get a surjection Aj; ; —> A which is an isomorphism by
dimension. From the expression of A};, g we can deduce directly that the multiplication
is €™ €% where pr; : (Z/27)? —> 7,/27Z are the two projections. This is the second row.

Now assume [ > 2. Since v?,=v?, and v} , =B and arguing as above we get
A:k[[ﬁﬂ A}, where A, u=1, 8 € k[#] and the multiplication pA**"" This is the third row.

Finally, the last sentence is clear by definition of X', and Proposition 5.40. |

Remark 5.54. If X is a locally noetherian integral scheme and there exists a D(M)-
cover Y/ X such that Y is normal crossing in codimension 1, then X is defined over a
field. Indeed if char Ox(X) = p then F, € Ox(X). Otherwise, Z € Ox(X) and we have to
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prove that any prime number g € Z is invertible. We can assume X = Spec R, where R is
a local noetherian domain. If dim R=0 then R is a field, otherwise, since ht(q) <1, we
can assume dim R=1 and R complete. By definition of normal crossing in codimension
1,if Y=Spec S and peY is over mg we have a flat and local map R— S— S, — B,
such that B contains a field k. The prime g is a nonzero divisor in R and therefore in B.
In particular, 0 # g € k* C B* and g € R*. |

Theorem 5.55. Let M be a finite abelian group, X be a locally noetherian and locally

factorial scheme with no isolated points and (char X, |M|) = 1. Consider the full subcat-

egory
NC)I( ={Y/X e D(M)-Cov(X) | Y is normal crossing in codimension 1} C D(M)-Cov(X).

Then NC} # ¢ if and only if each connected component of X is defined over a field. In

this case, define

&9 for ¢ : M — 7Z./1Z surjective with [ > 1,
A22LLe for ¢ : M —> My 5 surjective with [ > 3,

AV2HLAL29 for ¢ : M —> M, 914141 SUTjective with [ > 1

|on
Il

and G} as the full subcategory of F¢(X) of objects (£, M, z, A) such that:
NC.X g £ z

(1) forall £#£68 €&, codimV(zg) N V(z) > 2 except the case where £ =&?,§ =V

¢
/_@ Z)27
M — (Z)27)?
pr, 727
v

in which vp(zes) = vp(zer) =1 if pe YV N V(2Zg0) N V(2Zew);
(2) forall E€& and pe YV vp(ze) <2 and vp(z:) =2 if and only if £ =E? where
¢ : M — 7Z/27 is surjective.

Then we have an equivalence of categories

Crox =71z (NCy) —> NC}. 0
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Proof. The first claim comes from Remark 5.54. We will make use of Theorem 5.45. If
Y/XeNCy and pe YV we have hy,x(p) < dimy) m,/m3 < 2 since etale maps preserve
tangent spaces and dimm,/m?% < 2. So NC} C D2.

Let § be the sequence of smooth extremal rays used in Theorem 5.45. We know
that né_l(NC;() C CZ. So we have only to prove that ng_l(NC)l() C Fe(X) C F5(X) and that
any element Y € NC} locally, in codimension 1, satisfies the requests of the theorem.
Since X is a disjoint union of positive-dimensional, integral connected components, we
can assume that X = Spec R, where R is a complete discrete valuation ring. Since R con-
tains a field, then R~ k[x]. Let x eng(i))zf) and D the associated M-cover over R. Let
C be the maximal torsor of D/R and H = Hp,g. Note that, for any maximal ideal g of C
we have C4 >~ k(q)[x] since C/R is etale. Moreover, Spec D € NC} for M if and only if for
any maximal prime p of D SpecD, e NCépBC Cq for M/H, where g =C N p. In the same way
X € Cpc x for M if and only if, for any maximal prime g of C, xjspecc, € GIIV'C,SpeCCq for M/H.
We can therefore reduce the problem to the case Hp,r =0. We can also assume that k
contains the |M|-roots of unity.

First assume that Spec D € NCi. If D is regular, the conclusion comes from
Theorem 4.42. So assume D not regular and denote by u: R=k[x] — D the associated
map. We know that D/m,=k. By Cohen's structure theorem, we can write D =k[y]/I
in such a way that pu; =idg. By definition, since D is local and complete, there exists
an etale extension D — B = L[s, t]/(st). Using the properties of complete rings, B/D
is finite and so B~ D ®; L. Replacing the base R by R®y L we can assume that D~
k[s, t]/(st). The function u:k— D extends to a map v:D — D sending s, ¢ to itself.
This map is clearly surjective. Since Spec D contains three points, v induces a closed
immersion Spec D —> Spec D which is a bijection. Since D is reduced v is an isomor-
phism. This shows that we can write D = A=kf[s, t]/(st) in such a way that p =idk. So
D(M) ~ M acts as a subgroup of AutiA such that AM ~ k[z]. In particular, by Lemma 5.51,
there exists I(§,n) e M. Up to equivariant isomorphisms the possibilities allowed
are described in Proposition 5.53 and coincides with the ones of the statement. So
X € Ciyc.x-

Now assume that x € @IIVC, x- By definition of ng the multiplication that defines
D over R is something of the form v = )1zf, where ) is an M-torsor and &£ is one of
the ray of Table 1. The case £ =&? comes from Theorem 4.42. Since, in our hypoth-
esis, an M-torsor (in the fppf meaning) is also an etale torsor, replacing the base R
by an etale neighborhood (that maintains the form k[x]), we can assume A =1. In this
case, thanks to Lemma 5.52 and Proposition 5.53, we can conclude that A~ k[s, t]/(st) as

required. |
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Corollary 5.56. Let X be a locally noetherian and regular in codimension 1 (normal)
scheme with no isolated points, M be a finite abelian group with (char X, |M|) =1 and
|M| odd. If Y/X is a D(M)-cover and Y is normal crossing in codimension 1 then Y is

regular in codimension 1 (normal). O

Proof. Since Y/X has Cohen-Macaulay fibers it is enough to prove that Y is regular in
codimension 1 by Serre's criterion. So we can assume X = Spec R, where R is a discrete

valuation ring, and apply Theorem 4.42 just observing that ﬁé/géf = @zlvc, X |

Remark 5.57. We keep notation from Theorem 5.55 and set §=(&",n: M —
Z./dZ surjective, d> 1). We have that 7; ' (NC}) = Cy x N F5, that is, the covers Y/X e
NC} writable only with the rays in §, has the same expression of C}. x but with object
in F;. Therefore, the multiplications that yield a not smooth but with normal crossing
in codimension 1 covers are only £? + £, where ¢ and  are morphism as in (1), and
£%, where ¢ : M —> 7./27 is surjective. This result can also be found in [2, Theorem 1.9].
In particular, if M = (Z/27)", where § = £ thanks to Proposition 5.44, these are the only
possibilities. O
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