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Given a flat, finite group scheme G finitely presented over a base scheme we introduce

the notion of ramified Galois cover of group G (or simply G-cover), which generalizes the

notion of G-torsor. We study the stack of G-covers, denoted with G-Cov, mainly in the

abelian case, precisely when G is a finite diagonalizable group scheme over Z. In this

case, we prove that G-Cov is connected, but it is irreducible or smooth only in few finitely

many cases. On the other hand, it contains a “special” irreducible component ZG , which

is the closure of BG and this reflects the deep connection we establish between G-Cov

and the equivariant Hilbert schemes. We introduce “parametrization” maps from smooth

stacks, whose objects are collections of invertible sheaves with additional data, to ZG

and we establish sufficient conditions for a G-cover in order to be obtained (uniquely)

through those constructions. Moreover, a toric description of the smooth locus of ZG is

provided.

1 Introduction

Let G be a flat, finite group scheme finitely presented over a base scheme (say over a

field, or, as in this paper, over Z). In this paper, we study G-Galois covers of very general

schemes. We define a (ramified) G-cover as a finite morphism f : X −→Y with an action
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2 F. Tonini

of G on X such that f is G-invariant and f∗OX is fppf-locally isomorphic to the regular

representation OY[G] as OY[G]-comodule. This definition is somehow the most natural:

it generalizes the notion of G-torsors and, under suitable hypothesis, coincides with

the usual definition of Galois cover when the group G is constant (see, e.g., [2, 6, 18]).

Moreover, as explained below, in the abelian case G-covers are tightly related to the

theory of equivariant Hilbert schemes (see, e.g., [1, 10, 16, 19]).

We call G-Cov the stack of G-covers and the aim of this article will be to describe

its structure, especially in the abelian diagonalizable case. Our first result is the follow-

ing theorem:

Theorem (2.2, 2.10). The stack G-Cov is algebraic and finitely presented over S. More-

over, BG, the stack of G-torsors, is an open substack of G-Cov. �

We denote by μn the diagonalizable group over Z associated to Z/nZ. In many

concrete problems, one is interested in a more direct and concrete description of a G-

cover f : X −→Y. This is very simple and well known when G =μ2: such a cover f is

given by an invertible sheaf L on Y with a section of L⊗2. Similarly, when G =μ3, a μ3-

cover f is given by a pair (L1,L2) of invertible sheaves on Y with maps L⊗2
1 −→L2 and

L⊗2
2 −→L1 (see [3, §6]).

In general, however, there is no comparable description of G-covers. Very little

is known when G is not abelian, beyond the cases G = Sd with d= 3,4,5: see [6] for the

case G = S3 and [4, 5, 9, 15] for the non-Galois case.

Even in the abelian case, the situation becomes complicated very quickly when

the order of G grows. The paper that inspires our work is [18]; here, the author describes

G-covers X −→Y when G is an abelian group, Y is a smooth variety over an algebraically

closed field of characteristic prime to |G| and X is normal, in terms of certain invertible

sheaves on Y, generalizing the description given above for G =μ2 and μ3.

Here, we concentrate on the case when G is a finite diagonalizable group scheme

over Z; thus, G is isomorphic to a finite direct product of group schemes of the form μd

for d≥ 1. We consider the dual finite abelian group M=Hom(G,Gm) so that, by stan-

dard duality results (see [8]), G is the fppf sheaf of homomorphisms M−→Gm and a

decomposition of M into a product of cyclic groups yields the decomposition of G into

a product of μd’s.

In this case, we have an explicit description of a G-cover in terms of sequences

of invertible sheaves. Indeed a G-cover over Y is of the form X = Spec A, where A is a
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Stacks of Ramified Covers Under Diagonalizable Group Schemes 3

coherent sheaf of algebras over Y with a decomposition

A=
⊕
m∈M

Lm s.t. L0 =OY,Lm invertible and LmLn⊆Lm+n for any m,n∈ M.

So a G-cover corresponds to a sequence of invertible sheaves (Lm)m∈M with maps ψm,n :

Lm ⊗ Ln−→Lm+n satisfying certain rules and our principal aim will be to simplify the

data necessary to describe such covers. For instance, G-torsors correspond to sequences

where all the maps ψm,n are isomorphisms. Therefore, if G =μl , a G-torsor is simply

given by an invertible sheaf L=L1 and an isomorphism L⊗l 	O.

When G =μ2 or G =μ3 the description given above shows that the stack G-Cov

is smooth, irreducible, and very easy to describe. In the general case, its structure turns

out to be extremely intricate. For instance, as we will see, G-Cov is almost never irre-

ducible, but has a “special” irreducible component, called ZG , which is the scheme-

theoretically closure of BG. This parallels what happens in the theory of M-equivariant

Hilbert schemes (see [10, Remark 5.1]). It turns out that this theory and the theory

of G-covers are deeply connected: given an action of G on Ar, induced by elements

m=m1, . . . ,mr ∈ M, the equivariant Hilbert scheme M-Hilb Ar, which we will denote

by M-Hilbm to underline the dependency on the sequence m, can be viewed as the func-

tor whose objects are G-covers with an equivariant closed immersion in Ar. The for-

getful map ϑ : M-Hilbm −→G-Cov is smooth and an atlas provided that m contains all

the elements in M − {0} (4.8). Moreover, ϑ−1(ZG) coincides with the main component of

M-Hilbm, first studied by Nakamura in [16].

We will prove the following results on the structure of G-Cov.

Theorem (4.13, 4. 17, 4.18, 4.20). When G is a finite diagonalizable group scheme over

Z, the stack G-Cov is

• flat and of finite type with geometrically connected fibers,

• smooth if and only if G 	μ2, μ3, μ2 × μ2,

• normal if G 	μ4,

• reducible if |G| ≥ 8 and G 
	 (μ2)
3.

The above properties continue to hold if we replace G-Cov with M-Hilbm if

M − {0} ⊆m. �

We do not know whether G-Cov is integral for G 	μ5, μ6, μ7, (μ2)
3. So G-Cov

is usually reducible, its structure is extremely complicated and we have little hope
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4 F. Tonini

of getting to a real understanding of the components not containing BG. Therefore,

we will focus on the main irreducible component ZG of G-Cov. The main idea behind

this paper, inspired by the results in [18], is to try to decompose the multiplications

ψm,n∈Lm+n⊗ L−1
m ⊗ L−1

n as a tensor product of sections of other invertible sheaves. Fol-

lowing this idea, we will construct parametrization maps πE : FE −→ZG ⊆G-Cov, where

FE are “nice” stacks, for example smooth and irreducible, whose objects are those

decompositions.

This construction can be better understood locally, where a G-cover over

Y= Spec R is just X = Spec A, where A is an R-algebra with an R-basis {vm}m∈M, v0 = 1

(Lm =OYvm), so that the multiplications are elements ψm,n∈ R such that vmvn=ψm,nvm+n.

Consider a∈ R, a collection of natural numbers E = (Em,n)m,n∈N and set ψm,n=
aEm,n. The condition that the product structure on A=⊕

m Rvm defined by the ψm,n yields

an associative, commutative R-algebra, that is, makes Spec A into a G-cover over Spec R,

translates in some additive relations on the numbers Em,n. Call K∨
+ the set of such col-

lections E . More generally, given E = E1, . . . , Er ∈ K∨
+, we can define a parametrization

Rr � (a1, . . . ,ar)−→ψm,n= a
E1

m,n

1 · · ·aEr
m,n

r .

This is essentially the local behavior of the map πE : FE −→G-Cov. In the global case,

the elements ai will be sections of invertible sheaves.

From this point of view the natural questions are: given a G-cover over a scheme

Y when does there exist a lift to an object of FE(Y)? Is this lift unique? How can we

choose the sequence E?

The key point is to give an interpretation to K∨
+ (that also explains this notation).

Consider ZM with canonical basis (em)m∈M and define vm,n= em + en− em+n∈ZM/〈e0〉. If

p : ZM/〈e0〉 −→ M is the map p(em)=m, the vm,n generate Ker p. Now call K+ the sub-

monoid of ZM/〈e0〉 generated by the vm,n, K =Ker p its associated group and also consider

the torus T =Hom(ZM/〈e0〉,Gm), which acts on Spec Z[K+]. By construction, we have that

a collection of natural numbers (Em,n)m,n∈M belongs to K∨
+ if and only if the association

vm,n−→ Em,n defines an additive map K+ −→N. Therefore, as the symbol suggests, we

can identify K∨
+ with Hom(K+,N), the dual monoid of K+. Its elements will be called

rays. More generally, a monoid map ψ : K+ −→ (R, ·), where R is a ring, yields a multi-

plication ψm,n=ψ(vm,n) on
⊕

m∈M Rvm and therefore we obtain a map Spec Z[K+]−→ZG .

We will prove that (see 4.6):

Theorem. We have ZG 	 [Spec Z[K+]/T ] and BG 	 [Spec Z[K]/T ]. �
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Stacks of Ramified Covers Under Diagonalizable Group Schemes 5

We introduce the following notation: given α ∈N, we set 0α = 1 if α= 0 and 0α = 0

otherwise. Given E = E1, . . . , Er ∈ K∨
+ we have defined a map πE : FE −→ZG . Note that if

γ is a subsequence of E then Fγ is an open substack of FE and (πE)|Fγ
= πγ . The lifting

problem for the maps πE clearly depends on the choice of the sequence E . Considering

larger E allows us to parametrize more covers, but also makes uniqueness of the lifting

unlikely. In this direction, we have proved that:

Theorem (3.21). Let k be an algebraically closed field and suppose we have a collec-

tion E whose rays generate the rational cone K∨
+ ⊗Q. Then FE(k)−→ZG(k) is essentially

surjective. In other words, a G-cover of Spec k in the main component ZG has a multipli-

cation of the form ψm,n= 0Em,n for some E ∈ K∨
+. �

On the other hand, small sequences E can guarantee uniqueness but not exis-

tence. The solution we have found is to consider a particular class of rays, called

extremal, that have minimal nonempty support. Set η for the sequence of all extremal

rays (that is finite). Note that extremal rays generate K∨
+ ⊗Q. We prove that:

Theorem (3.46, 3.47). The smooth locus Zsm
G of ZG is of the form [XG/T ], where XG is a

smooth toric variety over Z (whose maximal torus is Spec Z[K]). Moreover, πη : Fη −→ZG

induces an isomorphism of stacks

π−1
η (Zsm

G )
	−−→Zsm

G . �

Among the extremal rays there are special rays, called smooth, that can be

defined as extremal rays E whose associated multiplication ψm,n= 0Em,n yields a cover

in Zsm
G . Set ξ for the sequence of smooth extremal rays. It turns out that the theorem

above holds if we replace η with ξ .

If, given a scheme X, we denote by Pic X the category whose objects are invertible

sheaves on X and whose arrows are arbitrary maps of sheaves, we also have:

Theorem (3.51). Consider a 2-commutative diagram:

Y FE

X G-Cov

f πE
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6 F. Tonini

where X and Y are schemes and E is a sequence of elements of K∨
+. If Pic X

f∗−−→ Pic Y

is fully faithful (resp. an equivalence) the dashed lifting is unique (resp. exists and is

unique). �

In particular, the theorems above allow us to conclude that:

Theorem (3.47, 3.52). Let X be a locally noetherian and a locally factorial scheme.

A cover χ ∈G-Cov(X) such that χ|k(p) ∈Zsm
G (k(p)) for any p∈ X with codimpX ≤ 1 lifts

uniquely to Fξ (X). �

An interesting problem is to describe all (smooth) extremal rays. This seems very

difficult and it is related to the problem of finding Q-linearly independent sequences

among the vm,n∈ K+. A natural way of obtaining extremal rays is trying to describe G-

covers with special properties. The first examples of them arise looking at covers with

normal total space. Indeed in [18] the author is able to describe the multiplications yield-

ing regular G-covers of a discrete valuation ring. This description, using the language

introduced above, yields a sequence δ = (Eφ)φ∈ΦM of smooth extremal rays, where ΦM is

the set of surjective maps M−→Z/dZ with d> 1. In this paper, we will define a stratifi-

cation of G-Cov by open substacks BG =U0 ⊆U1 ⊆ · · · ⊆U|G|−1 =G-Cov and we will prove

that there exists an explicitly given sequence E of smooth extremal rays (defined in

Proposition 5.40) containing δ such that:

Theorem (Theorems 4.40, 5.42). We have U2 ⊆Zsm
G and πE : FE −→ZG induces isomor-

phisms of stacks

π−1
E (U2)

	−−→U2, π
−1
δ (U1)= π−1

E (U1)
	−−→U1. �

The above theorem implies that M-HilbA2 is smooth and irreducible (5.43). In

this way, we get an alternative proof of the result in [13] (later generalized in [14]) in the

particular case of equivariant Hilbert schemes.

Theorem (4.41, 5.45). Let X be a locally noetherian and a locally factorial scheme and

χ ∈G-Cov(X). If χ|k(p) ∈U1 for any p∈ X with codimpX ≤ 1, then χ lifts uniquely to Fδ(X).
If χ|k(p) ∈U2 for any p∈ X with codimpX ≤ 1, then χ lifts uniquely to FE(X). �

Note that E = δ if and only if G 	 (μ2)
l or G 	 (μ3)

l (Proposition 5.44). Finally we

prove:
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Stacks of Ramified Covers Under Diagonalizable Group Schemes 7

Theorem (Theorems 4.42, 5.55). Let X be a locally noetherian and locally factorial inte-

gral scheme with dim X ≥ 1 and (char X, |M|)= 1 and Y/X be a G-cover. If Y is regular in

codimension 1 it is normal and Y/X comes from a unique object of Fδ(X). If Y is normal

crossing in codimension 1 (see Definition 5.47) then Y/X comes from a unique object of

Fγ (X), where δ ⊆ γ ⊆ E is an explicitly given sequence. �

The part concerning regular in codimension 1 covers is essentially a rewriting of

[18, Theorem 2.1 and Corollary 3.1] extended to locally noetherian and locally factorial

schemes, while the last part generalizes [2, Theorem 1.9].

Outline of the paper. We now briefly summarize how this paper is divided. In

Section 2, we will introduce the notion of G-covers, for a general group G, and prove

some facts about them, for example, the algebraicity of G-Cov. In Section 3 we will

introduce some general tools that will be applied in the study of G-Cov, when G is a finite

and diagonalizable group scheme. In this case, G-Cov and some of its substacks, like ZG

and BG, share a common structure, that is, they are all of the form Xφ = [Spec Z[T+]/T ],

where T+ is a finitely generated commutative monoid whose associated group is free of

finite rank, T is a torus over Z and φ : T+ −→Zr is an additive map, that induces the

action of T on Spec Z[T+]. Section 3 will be dedicated to the study of such stacks. As

we will see many facts about G-Cov are just applications of general results about such

stacks. For instance the existence of a special irreducible component Zφ of Xφ as well as

the use of T∨
+ =Hom(T+,N) for the study of the smooth locus of Zφ are properties that

can be stated in this setting. Section 4 and 5 are dedicated to the study of G-covers, in

the particular case where G is a finite and diagonalizable group scheme. In Section 4,

we will explain how G-Cov can be viewed as a stack of the form Xφ and how it is related

to the equivariant Hilbert schemes. Then we will study the properties of connectedness,

irreducibility and smoothness for G-Cov. Finally, we will introduce the stratification

U0 ⊆U1 ⊆ · · · ⊆U|G|−1 =G-Cov and we will characterize the locus U1. In Section 5, we will

study the locus U2 and G-covers whose total space is normal crossing in codimension 1.

All the other sections will be dedicated to the study of G-Cov when G is a finite

diagonalizable group with dual group M=Hom(G,Gm).

Notation. A map of schemes f : X −→Y will be called a cover if it is finite, flat

and of finite presentation or, equivalently, if it is affine and f∗OX is locally free of finite

rank. If X is a scheme and p∈ X we set codimpX = dimOX,p and we will denote by X(1) =
{p∈ X | codimpX = 1} the set of codimension 1 points of X.

If N is an abelian group we set D(N)=Homgroups(N,Gm) for the diagonalizable

group associated to it, while if f : G −→ S is an affine group scheme we set OS[G]= f∗OG .
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8 F. Tonini

Moreover we will call a OY[G]-comodule structure on a quasi-coherent sheaf F simply a

G-comodule structure.

If F is a quasi-coherent sheaf on a scheme X, the expression s ∈F will always

mean s ∈F(X)=H0(X,F). Moreover, we will denote by V(s) the zero locus of s in X, that

is, the closed subscheme associated with the sheaf of ideals Ker(OX
s−−→F).

Given an element f = (a1, . . . ,ar) ∈Zr and invertible sheaves L1, . . . ,Lr on a

scheme we will use the notation

L f =
⊗

i

L⊗ai
i , Sym∗L= Sym∗(L1, . . . ,Lr)=

⊕
g∈Zr

Lg.

Note also that, if for any i,we have Li =O, then there is a canonical isomorphism L f 	O.

Given α ∈N, we will use the following convention:

0α =
⎧⎨⎩1 α = 0,

0 α > 0.

We denote by (sets) the category of sets.

The abbreviation ‘fppf’ stands for ‘faithfully flat of finite presentation’.

Finally, if X is an algebraic stack, we denote by |X | its associated topological

space.

2 G-covers

In this section, we will fix a base scheme S and a flat and finite group scheme G finitely

presented over S. We will denote by A the regular representation of G, that is, A=OS[G]

with the OY[G]-comodule structure μ : A−→A⊗OS[G] induced by the multiplication

of G.

The aim of this section is to introduce the notion of a ramified Galois cover and

prove that the associated stack is algebraic.

Definition 2.1. Given a scheme T over S, a ramified Galois cover of group G, or simply

a G-cover, over it is a cover X
f−−→ T together with an action of GT on it such that there

exists an fppf covering {Ui −→ T} and isomorphisms of G-comodules

( f∗OX)|Ui 	A|Ui .
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Stacks of Ramified Covers Under Diagonalizable Group Schemes 9

We will call G-Cov(T) the groupoid of G-covers over T , where the arrows are the

G-equivariant isomorphisms of schemes over T . �

The G-covers form a stack G-Cov over S. Moreover any G-torsor is a G-cover and

more precisely we have:

Proposition 2.2. BG is an open substack of G-Cov. �

Proof. Given a scheme U over S and a G-cover X = Spec B over U , X is a G-torsor if

and only if the map G × X −→ X × X is an isomorphism. This map is induced by a map

B ⊗B
h−−→B ⊗O[GU ] and so the locus over which X is a G-torsor is given by the vanish-

ing of Coker h, which is an open subset. �

Definition 2.3. The main component ZG of G-Cov is the reduced closed substack

induced by the closure of BG in G-Cov. �

In order to prove that G-Cov is an algebraic stack we will present it as a quotient

stack by a smooth group scheme.

Notation 2.4. Let S be a scheme and F be a quasi-coherent sheaf over it. We denote by

W(F) : (Sch/S)op −→ (sets) the functor

W(F)(U f−−→ S)=H0(U, f∗F).

Structures of G-comodule over F correspond to left actions of G on the functor W(F).
If H is another quasi-coherent sheaf over S with a structure of G-comodule,

there is an induced left action on the functor Hom(W(F),W(H)). We denote by

HomG(W(F),W(H)) (resp. EndGW(F), AutGW(F)) the subfunctor of Hom(W(F),W(H))
(resp. End W(F), Aut W(F)) given by the G-invariants elements, that are exactly the G-

equivariant morphisms. When F is locally free of finite rank, there is a natural isomor-

phism

W(Hom(F ,H))−→Hom(W(F),W(H))

that induces a G-comodule structure on the sheaf Hom(F ,H). The subsheaf of

G-invariants, which we will denote by HomG(F ,H), coincides with the subsheaf

of Hom(F ,H) of morphisms preserving the G-comodule structures. Finally, we set

EndG
(F)=HomG(F ,F). �
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10 F. Tonini

Remark 2.5. If F is a locally free sheaf of finite rank, then W(F) is smooth and

affine. �

Proposition 2.6. The functor

(Sch/S)op (sets)

T

{
algebra structures on AT

in the category of G-comodules

}XG

is an affine scheme finitely presented over S. �

Proof. Let T be a scheme over S. An element of XG(T) is given by maps

AT ⊗AT
m−−→AT , OT

e−−→AT

for which A becomes a sheaf of algebras with multiplication m and identity e(1) and

such that μ is a homomorphism of algebras over OT . In particular, e has to be an isomor-

phism onto AG =OT . Therefore, we have an inclusion XG ⊆Hom(W(A⊗A),W(A))×Gm,

which turns out to be a closed immersion, since locally, after we choose a basis of A, the

above conditions translate in the vanishing of certain polynomials. �

Proposition 2.7. AutGW(A) is a smooth group scheme finitely presented over S. �

Proof. If T is an S-scheme, the morphisms

ε ◦ φ φ,

OT [G]∨ EndG
(A⊗OT ),

f ( f ⊗ id) ◦Δ,

where Δ and ε are, respectively, the co-multiplication and the co-unit of OT [G], are

inverses of each other. Since

W(OS[G]∨)	Hom(W(OS[G]),W(OS)),

we obtain an isomorphism EndGW(A)	W(OS[G]∨), so that EndGW(A) and its open sub-

scheme AutGW(A) are smooth and finitely presented over S. �
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Stacks of Ramified Covers Under Diagonalizable Group Schemes 11

Remark 2.8. AutGW(A) acts on XG in the following way. Given a scheme T over S, a

G-equivariant automorphism f : AT −→AT and (m, e) ∈ XG(T) we can set f(m, e) for the

unique structure of sheaf of algebras on AT such that f : (AT ,m, e)−→ (AT , f(m, e)) is

an isomorphism of OT -algebras. �

Proposition 2.9. The natural map XG
π−−→G-Cov is an AutGW(A)-torsor, that is,

G-Cov	 [XG/AutGW(A)]. �

Proof. Consider a cartesian diagram

P XG

U G-Cov
f

π

where U is a scheme and f : Y−→U is a G-cover. We want to prove that P is an

AutGW(A) torsor over U and that the map P −→ XG is equivariant. Since π is an fppf

epimorphism, we can assume that f comes from XG , that is, f∗OY =AU with multiplica-

tion m and neutral element e. It is now easy to prove that

AutGW(AU ) P ,

h h(m, e)

	

is a bijection and that all the other claims hold. �

Using the above propositions, we can conclude that:

Theorem 2.10. The stack G-Cov is algebraic and finitely presented over S. �

3 The Stack Xφ

In the following sections, we will study the stack G-Cov when G =D(M), the diagonal-

izable group of a finite abelian group M. The structure of this stack and of some of its

substacks is somehow special and in this section we will provide general constructions

and properties that will be used later. To a monoid map T+
φ−−→Zr, we will associate a
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12 F. Tonini

stack Xφ whose objects are sequences of invertible sheaves with additional data and

we will study particular “parametrization” of these objects, defined by a map of stacks

FE
πE−−→Xφ , where FE will be a “nice” stack, for instance, smooth.

In this section, we will consider given a commutative monoid T+ together to a

monoid map φ : T+ −→Zr.

Definition 3.1. We define the stack Xφ over Z as follows.

• Objects. An object over a scheme S is a pair (L,a) where:

– L=L1, . . . ,Lr are invertible sheaves on S;

– T+
a−−→ Sym∗L is an additive map such that a(t) ∈Lφ(t) for any t∈ T+.

• Arrows. An isomorphism (L,a) σ−−→ (L′,a′) of objects over S is given by a

sequence σ = σ1, . . . , σr of isomorphisms σi : Li
	−−→L′i such that

σφ(t)(a(t))= a′(t) for any t∈ T+. �

Example 3.1. Let f1, . . . , fs, g1, . . . , gt ∈Zr and consider the stack X f,g of invertible

sheaves L1, . . . ,Lr with maps O−→L fi and O 	−−→Lgj . If T+ =Ns × Zt and φ : T+ −→Zr

is the map given by the matrix ( f1| · · · | fs|g1| · · · |gt) then X f,g =Xφ . �

Notation 3.2. We set

Z[T+]=Z[xt]t∈T+/(xtxt′ − xt+t′ , x0 − 1)

and OS[T+]=Z[T+]⊗Z OS. The scheme SpecOS[T+] over S represents the functor that

associates to any scheme U/S the set of additive maps T+ −→ (OU , ·), where · denotes

the multiplication on OU . The group D(Zr) acts on Spec Z[T+] by the graduation

deg xt = φ(t). �

Proposition 3.3. Set X = Spec Z[T+]. The choice Li =OX and

Lφ(t) OX

a(t) xt

	

induces a smooth epimorphism X −→Xφ such that Xφ 	 [X/D(Zr)]. In particular, Xφ is an

algebraic stack. �
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Stacks of Ramified Covers Under Diagonalizable Group Schemes 13

Proof. It is enough to note that an object of [X/D(Zr)](U ) is given by invertible sheaves

L1, . . . ,Lr with a D(Zr)-equivariant map Spec Sym∗L−→ Spec Z[T+] which exactly corre-

sponds to an additive map T+ −→ Sym∗L as in the definition of Xφ . It is easy to check

that the map X −→ [X/D(Zr)]−→Xφ is the one defined in the statement. �

Remark 3.4. Given a map U
a−−→ X = Spec Z[T+], that is, a monoid map T+

a−−→OU , the

induced object U
a−−→ X −→Xφ is the pair (L, ã), where Li =OU and for any t∈ T+

OU Lφ(t)
a(t) ã(t)

	

We will denote by a also the object (L, ã) ∈Xφ(U ).
Given two elements a,b : T+ −→OU ∈Xφ(U ), we have

IsoXφ(U )(a,b)= {σ1, . . . , σr ∈O∗
U | σφ(t)a(t)= b(t) ∀ t∈ T+}.

�

Lemma 3.5. Consider a commutative diagram:

T+ T ′
+

Zr Zs

h

φ ψ

g

where T+ and T ′
+ are commutative monoids and φ,ψ,h, and g are additive maps. Then

we have a 2-commutative diagram:

Spec Z[T ′
+] Spec Z[T+]

Xψ Xφ

(L, T ′
+

a−−→ Sym∗L) (M, T+
b−−→ Sym∗M)

h∗

Λ

(3.1)
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14 F. Tonini

where, for i = 1, . . . , r, Mi =Lg(ei) and b is the unique map such that

T+ Sym∗M Mv Lg(v)

T ′
+ Sym∗L Lg(v)

	

a

id

b

h

�

Proof. An easy computation shows that there is a canonical isomorphism Mv 	Lg(v) for

all v ∈Zr and so b(t) corresponds under this isomorphism to a(h(t)) ∈Lψ(h(t)) =Lg(φ(t)) 	
Mφ(t). So the functor Λ is well defined and we only have to check the commutativity of

the second diagram in the statement. The map Spec Z[T ′
+]−→ Spec Z[T+]−→Xφ is given

by trivial invertible sheaves and the additive map

T+ Z[T+][x1, . . . , xr]∏i xi Z[T ′
+][x1, . . . , xr]∏i xi

t xtxφ(t) xh(t)xφ(t)

Instead the map Spec Z[T ′
+]−→Xψ −→Xφ is given by trivial invertible sheaves and the

map b that makes the following diagram commutative:

T+ Z[T ′
+][x1, . . . , xr ]∏i xi xv

T ′
+ Z[T ′

+][y1, . . . , ys]∏i yi yg(v)

t xtyψ(t)

b

a

h

Since xh(t)xφ(t) is sent to xh(t)yg(φ(t)) = xh(t)yψ(h(t)) = a(h(t)) we find again b(t)= xh(t)xφ(t). �

Remark 3.6. The functor Xψ −→Xφ sends an element a : T ′
+ −→OU ∈Xψ(U ) to the ele-

ment a ◦ h∈Xφ(U ). Moreover, taking into account the description given in 3.4, if a,b :

T ′
+ −→OU ∈Xψ(U ), we have

IsoU (a,b) IsoU (a ◦ h,b ◦ h)

σ σ g(e1), . . . , σ g(er) �
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Stacks of Ramified Covers Under Diagonalizable Group Schemes 15

3.1 The main irreducible component Zφ of Xφ

Notation 3.7. A monoid will be called integral if it satisfies the cancellation law, that

is,

∀a,b, c, a+ b= a+ c�⇒ b= c.

Let T+ be a monoid. There exists, up to a unique isomorphism, a group T (resp. integral

monoid T int
+ ) such that any monoid map T+ −→ S+, where S+ is a group (resp. integral

monoid), factors uniquely through T (resp. T int
+ ). We call it the associated group (resp.

associated integral monoid) of T+. Note that if T is the associated group of T+, then

Im(T+ −→ T) can be chosen as the associated integral monoid of T+. We will continue to

denote by T the associated group of T+ and we set T int
+ = Im(T+ −→ T)⊆ T . In particular,

〈T int
+ 〉Z = T .

From now on T+ will be a finitely generated monoid whose associated group is a

free Z-module of finite rank. In order to simplify notation, we will often write φ : T −→
Zr, meaning the extension of φ : T+ −→Zr to T . Anyway, the stack Xφ will always be the

stack XT+−→Zr and when we will have to consider the stack XT−→Zr , we will always specify

a different symbol for the induced map T −→Z. �

Remark 3.8. If D is a domain, then Spec D[T ] is an open subscheme of Spec D[T+],

while Spec D[T int
+ ] is one of its irreducible components. In particular, we have the

following: �

Proposition 3.9. Let φ̂ : T −→Zr be the extension of φ and set φint = φ̂|T int+ . Then Bφ =
Xφ̂ −→Xφ is an open immersion, while Zφ =Xφint −→Xφ is a closed one. Moreover, Zφ is

the reduced closed stack associated to the closure of Bφ , it is an irreducible component

of Xφ and

Bφ 	 [Spec Z[T ]/D(Zr)] and Zφ 	 [Spec Z[T int
+ ]/D(Zr)]. �

Definition 3.10. With notation above, we will call Bφ and Zφ the principal open sub-

stack and the main irreducible component of Xφ , respectively. �

Notation 3.11. We set

T∨
+ =Hom(T+,N)= {E ∈Homgroups(T,Z) | E(T+)⊆N}.
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16 F. Tonini

We will call it the dual monoid of T+ and we will call its elements the rays for T+.

Note that T∨
+ = T int∨

+ . Given E = E1, . . . , Es ∈ T∨
+ , we will denote by E also the induced map

T −→Zs. Moreover we set

Supp E = {v ∈ T+ | ∃i E i(v) > 0}.

Finally, note that the dual monoid of a group is always 0. Therefore, when H is an abelian

group, the dual H∨ of H will always be the dual as Z-module. �

Definition 3.12. Given a sequence E = E1, . . . , Es ∈ T∨
+ set

Ns ⊕ T Zs ⊕ Zr

(ei,0) (ei,0)

(0, t) (E(t),−φ(t))

σE

where e1, . . . , es is the canonical basis of Zs. We will call FE =XσE . �

Remark 3.13. An object of FE over a scheme U is given by a sequence (L,M, z, λ)where

• L=L1, . . . ,Lr and M= (ME)E∈E =M1, . . . ,Ms are invertible sheaves on U ;

• z= (zE)E∈E = z1, . . . , zs are sections zi ∈Mi;

• for any t∈ T , λ(t)= λt is an isomorphism Lφ(t) 	−−→ME(t) additive in t.

An isomorphism (L,M, z, λ)−→ (L′,M′, z′, λ′) is a pair (ω, τ ) where ω=ω1, . . . , ωr, τ =
τ1, . . . , τs are sequences of isomorphisms Li

ωi−−→L′i,M j
τ j−−→M′

j such that τ j(zj)= z′j and

for any t∈ T we have a commutative diagram:

Lφ(t) ME(t)

L′φ(t) M′E(t)

λt

λ′t

τφ(t)ωφ(t)

An object over U coming from the atlas Spec Z[Ns ⊕ T ] is a pair (z, λ)where z= z1, . . . , zs ∈
OU and λ : T −→O∗

U is a group homomorphism. Given (z, λ), (z′, λ′) ∈FE(U ), we have

IsoU ((z, λ), (z
′, λ′))= {(ω, τ ) ∈ (O∗

U )
r × (O∗

U )
s | τizi = z′i, τ

E(t)λ(t)=ωφ(t)λ′(t)}. �
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Stacks of Ramified Covers Under Diagonalizable Group Schemes 17

Definition 3.14. Given a sequence E = E1, . . . , Es of elements of T∨
+ , we define the map

πE :FE −→Xφ

induced by the commutative diagram

t T+ Zr

(E(t),−t) Ns ⊕ T Zs ⊕ Zr

φ

σE �

Remark 3.15. We can describe the functor πE explicitly. So suppose that we have an

object χ = (L,M, z, λ) ∈FE(U ). We have πE(χ)= (L,a) ∈Xφ(U ) where a is given, for any

t∈ T+, by

Lφ(t) ME(t)

a(t) zE(t)

λt

Moreover, if (ω, τ ) is an isomorphism in FE , then πE(ω, τ )=ω.

If (z, λ) ∈FE(U ) then a= πE(z, λ) ∈Xφ(U ) is given by

T+ OU

t zE(t)/λt = zE
1(t)

1 · · · zEs(t)
s /λt �

Remark 3.16. If E = (E i)i∈I is a sequence of elements of T∨
+ , J ⊆ I, and we set δ = (E j) j∈J

we can define a map over Xφ as

Fδ FE
M′

i =
{

Mi i ∈ J,

O i /∈ J,
z′i =

{
zi i ∈ J,

1 i /∈ J.(L,M, z, λ) (L,M′, z′, λ)

ρ

In fact ρ comes from the monoid map T ⊕ NI −→ T ⊕ NJ induced by the projection.

Moreover, ρ is an open immersion, whose image is the open substack of FE of objects

(L,M, z, λ) such that zi generates Mi for all i /∈ J. We will often consider Fδ as an open

substack of FE . �
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18 F. Tonini

Definition 3.17. Given a sequence E = E1, . . . , Es of elements of T∨
+ , we define

TE
+ = TE1,...,Es

+ = {v ∈ T | ∀ i E i(v)≥ 0}.

We also consider the case s= 0, so that TE
+ = T . If we denote by φ̂ : TE

+ −→Zr the extension

of φ, we also define X E
φ =ZE

φ =Xφ̂ . �

Remark 3.18. Assume that we have a monoid map T+ −→ T ′
+ (compatible with φ and φ′)

inducing an isomorphism on the associated groups. If E = E1, . . . , Es ∈ T
′∨
+ ⊆ T∨

+ , then we

have a 2-commutative diagram

F ′
E FE

Xφ′ Xφ

	

π ′E πE

where F ′
E is the stack obtained from T ′

+ with respect to E . �

Proposition 3.19. The map πE :FE −→Xφ has a natural factorization

FE −→X E
φ −→Zφ −→Xφ. �

Proof. The factorization follows from Remark 3.18 taking monoid maps T+ −→
T int
+ −→ TE

+ . �

Remark 3.20. This shows that πE has image in Zφ .We will call with the same symbol

πE the factorization FE −→Zφ . �

We now want to show how the rays of T+ can be used to describe the objects of

Zφ over a field. Using notation from Remark 3.4, the result is as follows:

Theorem 3.21. Let k be a field and T+
a−−→ k∈Xφ(k). Then a∈Zφ(k) if and only if there

exists a group homomorphism λ : T −→ k̄∗ and E ∈ T∨
+ such that

a(t)= λt0
E(t)
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In particular, if E = E1, . . . , Er generate T∨
+ ⊗Q then πE : FE(k̄)−→Zφ(k̄) is essentially sur-

jective and so πE : |FE | −→ |Zφ| is surjective. Finally, if the map φ : T −→Zr is injective,

we have a one-to-one correspondence

Zφ(k)/	 {X ⊆ T+ | X = Supp E for E ∈ T∨
+ }

a {a= 0}
γ

In particular, |Zφ| = (Zφ(Q̄)/	)
⊔

[
⊔

primes p(Zφ(F̄p)/	)]. �

Before proving this theorem, we need some preliminary results that will also be

useful later.

Definition 3.22. If T+ is integral, E ∈ T∨
+ and k is a field, we define

pE =
⊕

v∈T+,E(v)>0

kxv ⊆ k[T+].

If p∈ Spec k[T+], we set pom =⊕
xv∈p kxv. �

The suffix (−)om here stays for “homogeneous”, since, when T+ =Nr and k[T+]=
k[x1, . . . , xr], pom is an homogeneous ideal, actually a monomial ideal.

Lemma 3.23. Let k be a field and assume that T+ is integral. Then:

(1) if E ∈ T∨
+ , pE is prime and k[{v ∈ T+ | E(v)= 0}]−→ k[T+]−→ k[T+]/pE is an iso-

morphism.

(2) If p∈ Spec k[T+] then pom = pE for some E ∈ T∨
+ . �

Proof. (1) It is obvious.

(2) pom is a prime thanks to [11, Proposition 1.7.12] and therefore pom = pE for

some E ∈ T∨
+ thanks to [17, Corollary 2.2.4]. �

Remark 3.24. If k is an algebraically closed field, φ : T −→Zr is injective and a,b∈Xφ(k)
differ by a torsor, that is, there exists λ : T+ −→ k∗ such that a= λb, then a	 b in Zφ(k).
Indeed λ extends to a map T −→ k∗ and, since k is algebraically closed, it extends again

to a map λ : Zr −→ k∗. �
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20 F. Tonini

Proof of Theorem 3.21. We can assume that k is algebraically closed and that T+ is

integral, since if a has an expression as in the statement then clearly a∈Zφ(k). Consider

p=Ker(k[T+]
a−−→ k). Thanks to Lemma 3.23, we can write pom = pE for some E ∈ T∨

+ . Set

T ′
+ = {v ∈ T+ | E(v)= 0} and T ′ = 〈T ′

+〉Z. Since a maps T ′
+ to k∗, there exists an extension

λ : T ′ −→ k∗. On the other hand, since k is algebraically closed, the inclusion T ′ −→ T

yields a surjection

Hom(T,k∗)−→Hom(T ′,k∗)

and so we can extend again to an element λ : T −→ k∗. Since one has Supp E = {a= 0} by

construction, it is easy to check that a(t)= λt0E(t) for all t∈ T+.

Now consider the last part of the statement and so assume φ : T −→Zr injec-

tive. The description of the objects a∈Zφ(k) given above shows that the map γ is

well defined. Moreover, it is surjective because given E ∈ T∨
+ , one can always define

a(t)= 0E(t). For the injectivity, let a,b∈Zφ(k) be such that {a= 0} = {b= 0}. We can write

a(t)= λt0E(t),b(t)=μt0E(t), where λ,μ : T −→ k∗, so that a and b differ by a torsor and are

therefore isomorphic thanks to Remark 3.24. Finally, since any point of |Zφ| comes from

an object of Zφ(Z), we also have the last equality. �

In some cases, the description of the objects of FE can be simplified, regardless

of E , in the sense that there exist a stack of reduced data F red
E , whose objects can be

described by less data, and an isomorphism FE 	F red
E . This kind of simplification could

be very useful when we have to deal with an explicit map of monoids φ : T+ −→Zr, as we

will see in Proposition 4.7. The idea is that in order to define an object (L,M, z, λ) ∈FE ,

we do not really need all the invertible sheaves L1, . . . ,Lr, because they are uniquely

determined by a subset of them and the other data.

Definition 3.25. Assume T
φ−−→Zr injective. Let V ⊆Zr be a submodule with a given

basis v1, . . . , vq and σ : Zr −→ V be a map such that (id− σ)Zr ⊆ T (or equivalently

π = π ◦ σ where π is the projection Zr −→Cokerφ). Define W= 〈(id− σ)V, σT〉 ⊆ V . Given

E = E1, . . . , E l ∈ T∨
+ consider the map

W ⊕ Nl Zq ⊕ Zl

(w, z) (−w, E(w)+ z)

ψE,σ

We define F red,σ
E =XψE,σ and we call it the stack of reduced data of E . �
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Lemma 3.26. Consider a submodule U ⊆Zp, a map E : U −→Zl and τ : Zp−→Zp such

that (id− τ)Zp⊆U . Consider the commutative diagram:

(u, z) U ⊕ Nl U ⊕ Nl

(−u, E(u)+ z) Zp ⊕ Zl Zp ⊕ Zl

(u, z) (τu, E(u− τu)+ z)

τ⊕id

ψψ

Then the induced map ϕ :Xψ −→Xψ is isomorphic to idXψ
. �

Proof. Let x1, . . . , xp be a Z-basis of Zp with a1, . . . ,ak ∈N such that a1x1, . . . ,akxk is a

Z-basis of U . We want to define a natural isomorphism idXψ

ω−−→ ϕ. First note that it

is enough to define it on the objects of Xψ coming from the atlas Spec Z[U ⊕ Nl ] and

prove the naturality between such objects on a fixed scheme T and for the restrictions.

An object coming from the atlas is of the form (λ, z), where λ : U −→O∗
T is an additive

map and z= z1, . . . , zl ∈OT . Moreover, ϕ(λ, z)= (λ̃, z), where λ̃= λ ◦ τ . Let η ∈D(Zp)(T) the

only elements such that ηxi = λ(xi − τxi) for i = 1, . . . , p. These objects are well defined

since (id− τ)Zp⊆U . We claim that ωT,(λ,z) = (η,1) is an isomorphism (λ, z)−→ ϕ(λ, z) and

define a natural transformation. It is an isomorphism since 1zj = zj and the condition

η−u1E(u)λ(u)= λ(τu) ∀u∈U

holds by construction checking it on the basis a1x1, . . . ,akxk of U (see Remark 3.4). It

is also easy to check that this isomorphisms commute with the change of basis. So it

remains to prove that, if (σ , μ) is an isomorphism (λ, z)−→ (λ′, z′) then we have a com-

mutative diagram:

(λ, z) (λ′, z′)

ϕ(λ, z) ϕ(λ′, z′)

(σ ,μ)

ωT,(λ′,z′)

ϕ(σ ,μ)

ωT,(λ,z)

We have ϕ(σ , μ)= (σ̃ , μ̃) with μ̃=μ and σ̃ xi = σ τxiμE(xi−τxi) (see Remark 3.6). So it is easy

to check that the commutativity in the second member holds. For the first, the condition
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is σ̃ η= η′σ , which is equivalent to

(σ̃ η)xi = σ τxiμE(xi−τxi)λ(xi − τxi)= (η′σ)xi = λ′(xi − τxi)σ
xi

and to σ−(xi−τxi)μE(xi−τxi)λ(xi − τxi)= λ′(xi − τxi) for any i. But, since (σ , μ) is an isomor-

phism (λ, z)−→ (λ′, z′), the condition

σ−uμE(u)λ(u)= λ′(u) ∀u∈U

has to be satisfied. �

Proposition 3.27. Assume T
φ−−→Zr injective and let E = E1, . . . , Er ∈ T∨

+ and

σ,V, v1, . . . , vq be as in Definition 3.25. For appropriate choices of isomorphisms λ̃

given by Lemma 3.5, the functors

((N σei ⊗ME(ei−σei))i=1,...,r,M, z, λ̃) (N ,M, z, λ)

FE F red,σ
E

(L,M, z, λ) ((Lvi )i=1,...,q,M, z, λ|W)

are inverses of each other. �

Proof. Consider the commutative diagrams:

W ⊕ Ns T ⊕ Ns T ⊕ Ns W ⊕ Ns

Zq ⊕ Zs Zr ⊕ Zs Zr ⊕ Zs Zq ⊕ Zs

(x, y) (σx, E(x− σx)+ y)

ψψ φE

σ⊕id

φE

They induce functors Λ :FE −→F red,σ
E and Δ : F red,σ

E −→FE , respectively, that behave as

the functors of the statement thanks to the description given in Lemma 3.5. Finally,

applying Lemma 3.26, we obtain that Λ ◦Δ	 id and Δ ◦Λ	 id. �
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3.2 Extremal rays and smooth sequences

We continue to use notation from Notation 3.7. We have seen that given a collection E =
E1, . . . , Er ∈ T∨

+ we can associate to it a stack FE and a “parametrization” map FE −→Xφ .

The stack FE could be “too big” if we do not make an appropriate choice of the collection

E . This happens for example if the rays in E are not distinct or, more generally, if a ray in

E belongs to the submonoid generated by the other rays in E . Thus, we want to restrict

our attention to a special class of rays, called extremal and to special sequences of them.

Definition 3.28. An extremal ray for T+ is an element E ∈ T∨
+ such that

• E has minimal nonempty support, that is, the set Supp E ⊆ T+ is minimal in

({X ⊆ T+ | X 
= ∅ and X = Supp δ for some δ ∈ T∨
+ },⊆).

• E is normalized, that is, E : T −→Z is surjective. �

Lemma 3.29. Assume that T+ is an integral monoid and let v1, . . . , vl be a system of gen-

erators of T+. Then the extremal rays are the normalized E ∈ T∨
+ − {0} such that Ker E con-

tains rk T − 1 Q-independent vectors among the v1, . . . , vl . In particular, they are finitely

many and they generate Q+T∨
+ . �

Proof. Denote by Ω ⊆ T∨
+ , the set of elements defined in the statement. From [7, Section

1.2, (9)], it follows that Q+Ω =Q+T∨
+ . If E ∈Ω then it is an extremal ray. Indeed,

∅ 
= Supp E ′ ⊆ Supp E �⇒∃λ ∈Q+ s.t. E ′ = λE �⇒ Supp E ′ = Supp E .

Conversely, let E be an extremal ray and consider an expression

E =
∑
δ∈Ω

λδδ with λδ ∈Q≥0.

There must exists δ such that λδ 
= 0. So

Supp δ ⊆ Supp E �⇒ Supp δ= Supp E �⇒∃μ ∈Q+ s.t. E =μδ �⇒ E = δ. �
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Corollary 3.30. For an extremal ray E and E ′ ∈ T∨
+ . we have

Supp E ′ = Supp E ⇐⇒ ∃λ ∈Q+ s.t. E ′ = λE ⇐⇒ ∃λ ∈N+ s.t. E ′ = λE . �

Definition 3.31. An element v ∈ T+ is said indecomposable if whenever v = v′ + v′′ with

v′, v′′ ∈ T+ it follows that v′ = 0 or v′′ = 0. �

Proposition 3.32. T∨
+ has a unique minimal system of generators composed by the inde-

composable elements. Moreover, any extremal ray is indecomposable. �

Proof. The first claim of the statement follows from [17, Proposition 2.1.2] since T∨
+

is sharp, that is, it does not contain invertible elements. For the second, consider an

extremal ray E and assume E = E ′ + E ′′. We have

Supp E ′,Supp E ′′ ⊆ Supp E �⇒ E ′ = λE, E ′′ =μE with λ,μ ∈N

and so E = (λ+ μ)E �⇒ λ+ μ= 1�⇒ λ= 0 or μ= 0�⇒ E ′ = 0 or E ′′ = 0. �

Definition 3.33. A smooth sequence for T+ is a sequence E = E1, . . . , Es ∈ T∨
+ for which

there exist elements v1, . . . , vs in the associated integral monoid T int
+ of T+ such that

T int
+ ∩ Ker E generates Ker E and E i(v j)= δi, j for all i, j.

We will also say that a ray E ∈ T∨
+ − {0} is smooth if there exists a

smooth sequence as above such that E ∈ 〈E1, . . . , Es〉N or, equivalently, such that

Supp E ⊆ Supp E . �

Remark 3.34. If T+ is integral and Ω is a system of generators, one can always assume

that vi ∈Ω. Moreover, we also have that Ω ∩ Ker E generates Ker E .

Finally, the equivalence in the last sentence of Definition 3.33 follows from the

fact that, since Ker E is generated by elements in T int
+ , then the inclusion of the supports

implies that E|KerE = 0 and therefore E =∑
i E(vi)E i. �

Lemma 3.35. Let E = E1, . . . , Er be a smooth sequence. Then

TE
+ =Ker E ⊕ 〈v1, . . . , vr〉N ⊆ T where v1, . . . , vr ∈ T int

+ , E i(v j)= δi, j.
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Moreover, if z1, . . . , zs ∈ T int
+ generate T int

+ , then Z[TE
+ ]=Z[T int

+ ]∏E(zi )=0 xzi
so that Spec Z[TE

+ ]

(X E
φ ) is a smooth open subscheme (substack) of Spec Z[T int

+ ] (Zφ). �

Proof. We have T =Ker E ⊕ 〈v1, . . . , vr〉Z and clearly Ker E ⊕ 〈v1, . . . , vq〉N ⊆ TE
+ . Con-

versely, if v ∈ TE
+ , we can write

v= z+
∑

i

E i(v)vi with z∈Ker E �⇒ v ∈Ker E ⊕ 〈v1, . . . , vq〉N.

In particular, Spec Z[TE
+ ]	Ar

Z × DZ(Ker E) and so both Spec Z[TE
+ ] and X E

φ are smooth.

Now let

I = {i | E(zi)= 0} and S+ = 〈T int
+ ,−zi for i ∈ I 〉 ⊆ T.

We need to prove that S+ = TE
+ . Clearly, we have the inclusion⊆. For the reverse inclusion,

it is enough to prove that −Ker E ∩ T int
+ ⊆ S+. But if v ∈Ker E ∩ T int

+ then

v =
s∑

j=1

ajzj =
∑
j∈I

ajzj �⇒−v ∈ S+. �

Remark 3.36. Any subsequence of a smooth sequence is smooth too. Indeed, let δ =
E1, . . . , Es be a subsequence of a smooth sequence E = E1, . . . , Er, with r > s. We have to

prove that 〈Ker δ ∩ T int
+ 〉Z =Ker δ. Take v ∈Ker δ. So

v −
r∑

j=s+1

E j(v)v j ∈Ker E = 〈Ker E ∩ T int
+ 〉Z ⊆ 〈Ker δ ∩ T int

+ 〉Z �⇒ v ∈ 〈Ker δ ∩ T int
+ 〉Z. �

Proposition 3.37. Let E ∈ T∨
+ . Then E is a smooth extremal ray if and only if E is a

smooth sequence composed of one element, that is, Ker E ∩ T int
+ generates Ker E and there

exists v ∈ T+ such that E(v)= 1.

In particular, any element of a smooth sequence is a smooth extremal ray. �

Proof. We can assume that T+ is integral. If E is smooth and extremal, then there exists

a smooth sequence E1, . . . , Eq such that E ∈ 〈E1, . . . , Eq〉N. Since E is indecomposable, it

follows that E = E i for some i. Conversely, assume that E is a smooth sequence. So it is

smooth by definition and it is normalized since E(v)= 1 for some v. Finally, an inclu-

sion Supp δ⊆ Supp E for δ ∈ T∨
+ means that δ ∈ 〈E〉N, as remarked in Remark 3.34, and so

Supp δ =∅ or Supp δ = Supp E . �
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26 F. Tonini

We conclude with a lemma that will be useful later.

Lemma 3.38. Let T+ and T ′
+ be integral monoids and h : T −→ T ′ be a homomorphism

such that h(T+)= T ′
+ and Ker h= 〈Ker h∩ T+〉. If E = E1, . . . , Er ∈ T

′∨
+ , then

E smooth sequence for T ′
+ ⇐⇒ E ◦ h smooth sequence for T+. �

Proof. Clearly, there exist vi ∈ T ′
+ such that E i(v j)= δi, j if and only if there exist wi ∈ T+

such that E i ◦ h(w j)= δi, j. On the other hand, we have a surjective morphism

Ker E ◦ h/〈Ker E ◦ h∩ T+〉Z −→Ker E/〈Ker E ∩ T ′
+〉Z.

In order to conclude it is enough to prove that this map is injective. So let v ∈ T such that

h(v)=
∑

j

ajzj with aj ∈Z, zj ∈ T ′
+, E(zj)= 0.

Since h(T+)= T ′
+, there exists yj ∈ T+ such that h(yj)= zj. In particular, y=∑

j aj yj ∈
〈Ker E ◦ h∩ T+〉Z and

v − y∈Ker h= 〈Ker h∩ T+〉 ⊆ 〈Ker E ◦ h∩ T+〉. �

3.3 The smooth locus Zsm
φ of the main component Zφ

Lemma 3.39. Let E = E1, . . . , Eq be a smooth sequence and χ be a finite sequence of

elements of T∨
+ . Assume that all the elements of χ are distinct, each E i is an element of

χ and that for any δ in χ , we have

δ ∈ 〈E1, . . . , Eq〉N �⇒∃i δ = E i.

As usual denote by πχ the map Fχ −→Xφ . Then we have an equivalence

FE = π−1
χ (X E

φ )
	−−→X E

φ . �

Proof. Set χ = E1, . . . , Eq, η1, . . . , ηl = E, η. We first prove that π−1
χ (X E

φ )⊆FE . Since they

are open substacks, we can check this over an algebraically closed field k. Let (z, λ) ∈
π−1
χ (X E

φ ) so that a= πχ(z, λ)= zE/λ : T+ −→ k by Remark 3.15. We have to prove that zη j 
= 0.
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Assume by contradiction that zη j = 0. Since we can write a= b0η j and since a extends to

TE
+ so that a(t) 
= 0 if t∈ T+ ∩ Ker E , we have that η j is 0 on T+ ∩ Ker E . In particular,

Supp η j ⊆ Supp E �⇒ η j ∈ 〈E1, . . . , Eq〉N �⇒∃i η j = E i.

Thanks to Remark 3.16, it is enough to prove that if E is a smooth sequence such

that T+ = TE
+ then πE is an isomorphism. By Lemma 3.35 we can write T+ =W ⊕ Nq, where

W is a free Z-module such that E |W = 0 and, if we denote by v1, . . . , vq the canonical base

of Nq, E j(vi)= δi, j. Consider the diagram:

Nq ⊕ T T+

Nq ⊕ W ⊕ Zq W ⊕ Nq

γ (ei)= vi, γ|W =−idW, γ (vi)= 0

δ(ei)= φ(vi), δ|Zr = idZr

Zq ⊕ Zr Zr

= =

σE

γ

δ

φ

One can check directly its commutativity. In this way, we get a map s : Xφ −→FE . Again

a direct computation on the diagrams defining s and πE shows that πE ◦ s	 idXφ
and that

the diagram inducing G = s ◦ πE is

Nq ⊕ W ⊕ Zq Nq ⊕ W ⊕ Zq

α(ei)= ei − vi, α|W = idW, α|Zq = 0

β(ei)= φ(vi), β|Zr = idZr

Zq ⊕ Zr Zq ⊕ Zr

α

σEσE

β

We will prove that G 	 idFE . An object of FE(A), where A is a ring, coming from the

atlas is given by a= (z, λ, μ) : Nq ⊕ W ⊕ Zq −→ A, where z= (a(ei))i = z1, . . . , zq ∈ A, λ=
a|W : W−→ A∗ is an homomorphism and μ= (μ(vi))i =μ1 . . . , μq ∈ A∗. Moreover, Ga= a ◦ α
is ((zi/μi)i, λ,1). It is now easy to check that (μ,1) : Ga−→ a is an isomorphism and that

this map defines an isomorphism G −→ idFE . �

Corollary 3.40. If E is a smooth sequence then πE : FE −→Zφ is an open immersion with

image X E
φ . �
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28 F. Tonini

It turns out that if E is a smooth sequence, then X E
φ has a more explicit descrip-

tion:

Proposition 3.41. Let E = E1, . . . , Er be a smooth sequence, k be a field and a∈Xφ(k).
Then

a∈X E
φ (k) ⇐⇒ ∃E ∈ 〈E1, . . . , Er〉N, λ : T −→ k̄∗ s.t. a= λ0E .

Moreover if λ0E ∈X E
φ (k), for some E ∈ T∨

+ , λ : T −→ k̄∗, then E ∈ 〈E1, . . . , Er〉N. �

Proof. We can assume k algebraically closed and T+ integral. In this case, a∈X E
φ (k)

if and only if a : T+ −→ k extends to a map Ker E ⊕ Nr = TE
+ −→ k. So ⇐ holds. Con-

versely, from Theorem 3.21, we can write a= λ0E where λ : T −→ k∗ and E ∈ (TE
+ )∨. From

Lemma 3.35, we see that TE∨
+ = 〈E1, . . . , Er〉N. Finally, if λ0E ∈X E

φ for some E , then Supp E ⊆
Supp E and we are done. �

Lemma 3.42. Let E = (E i)i∈I be a sequence of distinct smooth extremal rays and Θ be a

collection of smooth sequences with rays in E . Set

FΘ
E =

{
(L,M, z, δ) ∈FE

∣∣∣∣∣ V(zi1) ∩ · · · ∩ V(zis) 
= ∅
iff ∃δ ∈Θ s.t. E i1 , . . . , E is ⊆ δ

}
.

Then, taking into account the identification made in Remark 3.16, we have

FΘ
E =

⋃
δ∈Θ

Fδ. �

Proof. Let χ = (L,M, z, λ) ∈⋃
δ∈Θ Fδ(T), for some scheme T and let p∈ V(zi1) ∩ · · · ∩

V(zis). This means that the pullback of πE(χ) to k(p) is given by a= b0E i1+···+E ir for some

b : T+ −→ k(p). By definition, there exists δ ∈Θ such that a∈Fδ(k(p)), that is, a=μ0δ for

some δ ∈ 〈δ〉N, μ : T −→ k(p)
∗
. So

Supp E i j ⊆ {a= 0} = Supp δ ⊆ Supp δ�⇒ E i j ∈ 〈δ〉N.

For the other inclusion, since all the Fδ are open substacks of FE , we can reduce

the problem to the case of an algebraically closed field k. So let (z, λ) ∈FΘ
E (k) and set J =

{i ∈ I | zi = 0}. By definition of FΘ
E there exists δ ∈Θ such that η= (E j) j∈J ⊆ δ and, taking

into account Remark 3.16, this means that a∈Fη(k)⊆Fδ(k). �
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Definition 3.43. Let Θ be a collection of smooth sequences. We define

XΘ
φ =

⋃
δ∈Θ

Spec Z[T δ
+]⊆ Spec Z[T+] and XΘ

φ =
⋃
δ∈Θ

X δ

φ ⊆Zφ. �

Theorem 3.44. Let E = (E i)i∈I be a sequence of distinct smooth extremal rays and Θ be

a collection of smooth sequences with rays in E . Then we have an isomorphism

FΘ
E = π−1

E (XΘ
φ )

	−−→XΘ
φ . �

Proof. Taking into account Lemma 3.42, it is enough to note that

π−1
E (XΘ

φ )= π−1
E

⎛⎝⋃
δ∈Θ

X δ

φ

⎞⎠=
⋃
δ∈Θ

FE∩δ =
⋃
δ∈Θ

Fδ
	−−→XΘ

φ . �

Proposition 3.45. Let E = (E i)i∈I be a sequence of distinct smooth extremal rays and Θ

be a collection of smooth sequences with rays in E . Then the set

ΔΘ = {〈η1, . . . , ηr〉Q+ | ∃δ ∈Θ s.t. η1, . . . , ηr ⊆ δ}

is a toric fan in T∨ ⊗Q whose associated toric variety over Z is XΘ
φ . Moreover,

XΘ
φ 	 [XΘ

φ /D(Z
r)]. �

Proof. We know that if η is a smooth sequence then Spec Z[T
η

+] is a smooth open

subset of Spec Z[T int
+ ] and it is the affine toric variety associated to the cone 〈η〉Q+ .

It is then easy to check that ΔΘ is a fan whose associated toric variety is XΘ
φ . Since

Spec Z[T
η

+] is the equivariant open subset of Spec Z[T int
+ ] inducing X η

φ in Zφ , then XΘ is

the equivariant open subset of Spec Z[T int
+ ] inducing XΘ

φ . In particular, we obtain the last

isomorphism. �

Lemma 3.46. Assume that T+ is integral and set Θ for the set of all smooth sequences.

Then XΘ
φ is the smooth locus of Spec Z[T+]. In particular, Zsm

φ =XΘ
φ 	 [XΘ

φ /D(Z
r)]. �

Proof. From Lemma 3.35, we know that Spec Z[TE
+ ] is smooth over Z and it is an open

subset of Spec Z[T+]. So we focus on the converse. Since Spec Z[T+] is flat over Z, we

can replace Z by an algebraically closed field k. Let p∈ Spec k[T+] be a smooth point. In
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particular, pom is smooth too. If pom = 0 then p∈ Spec k[T ] and we have done. So we can

assume pom = pE for some 0 
= E ∈ T∨
+ thanks to Lemma 3.23. We claim that there exists

a smooth sequence E1, . . . , Eq such that E ∈ 〈E1, . . . , Eq〉N. This is enough to conclude that

p∈ Spec k[TE
+ ] . Indeed if xw ∈ p for some w ∈Ker E ∩ T+ then it belongs to pom = pE and so

E(w) > 0, which is not our case.

So assume that we have E ∈ T∨
+ such that pE is a regular point. Set W= 〈Ker E ∩

T+〉Z and T ′
+ = T+ + W. Note that Spec k[T ′

+] is an open subset of Spec k[T+] that contains

pE . Moreover, k[T ′
+]/pE = k[W]. Let v1, . . . , vq ∈ T+ be elements such that

T ′
+ = 〈v1, . . . , vq〉N + W and E(vi) > 0

with q minimal. We claim that M= pE/p2
E 	 k[W]q, where pE is thought in k[T ′

+]. Indeed

M is a k-vector space over the xv, v ∈ T ′
+ that satisfies: E(v) > 0 and whenever we have v=

v′ + v′′ with v′, v′′ ∈ T ′
+ it follows that E(v′)= 0 or E(v′′)= 0. A simple computation shows

that such a v must be of the form vi + W for some i. But since we have chosen q minimal

we have (vi + W) ∩ (v j + W)=∅ if i 
= j. This implies that M is a free k[W]-module with

basis xv1 , . . . , xvq . This shows that q= htpE .

Now set V = 〈v1, . . . , vq〉Z. Since V + W= T , rk V ≤ q and

k[W]	 k[T ′
+]/pE �⇒ rk T = dim k[T ′

+]= htpE + dim k[W]= q + rk W,

we obtain that v1, . . . , vq are independent. Let E1, . . . , Eq given by E i(v j)= δi, j and E i
|W = 0.

In particular, W=Ker E and it is generated by elements in T+. Since E|W = 0, we have

E =
q∑

i=1

E(vi)E i, E(vi) > 0.

Moreover, since T+ ⊆ T ′
+ and E i ∈ T

′∨
+ we get that E i ∈ T∨

+ , as required. �

Theorem 3.47. If E is a sequence of distinct indecomposable rays containing the

smooth extremal rays then πE induces an equivalence

⎧⎪⎪⎨⎪⎪⎩(L,M, z, δ) ∈FE

∣∣∣∣∣∣∣∣
V(zi1) ∩ · · · ∩ V(zis)=∅
if E i1 , . . . , E is is not a

smooth sequence

⎫⎪⎪⎬⎪⎪⎭= π−1
E (Zsm

φ )
	−−→Zsm

φ .
�
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Proof. Lemma 3.46 tells us that Zsm
φ =XΘ

φ , where Θ is the collection of all smooth

sequences, while Lemma 3.39 allows us to replace E with the sequence of all smooth

extremal rays. Therefore, it is enough to apply Theorem 3.44 and Proposition 3.45. �

Proposition 3.48. Let a : T+ −→ k∈Xφ(k), where k is a field. Then a lies in Zsm
φ if and

only if there exists a smooth ray E ∈ T∨
+ and λ : T −→ k̄∗ such that a= λ0E . �

Proof. Apply Theorem 3.47 and Proposition 3.41. �

3.4 Extension of objects from codimension 1

In this subsection, we want to explain how it is possible, in certain cases, to check

that an object of Xφ over a sufficiently regular scheme X comes (uniquely) from FE only

checking what happens in codimension 1.

Notation 3.49. Given a scheme X, we will denote by Pic X the category whose objects

are invertible sheaves and whose arrows are maps between them. �

Proposition 3.50. Let X
f−−→Y be a map of schemes. If Pic Y

f∗−−→ Pic X is fully faithful

(resp. an equivalence) then Xφ(Y)
f∗−−→Xφ(X) has the same property. �

Proof. Let (L,a), (L′,a′) ∈Xφ(Y) and σ : f∗(L,a)−→ f∗(L′,a′) be a map in Xφ(X). Any

map σi : f∗Li −→ f∗Li comes from a unique map τi : Li −→Li, that is, σi = f∗τi. Since

f∗(τφ(t)(a(t)))= σφ(t)( f∗a(t))= f∗(a′(t))�⇒ τφ(t)(a(t))= a′(t)

τ is a map (L,a)−→ (L′,a′) such that f∗τ = σ . We can conclude that f∗ : Xφ(Y)−→Xφ(X)
is fully faithful.

Now assume that Pic Y
f∗−−→ Pic X is an equivalence. We have to prove that

Xφ(Y)
f∗−−→Xφ(X) is essentially surjective. So let (M,b) ∈Xφ(X). Since f∗ is an equiva-

lence, we can assume Mi = f∗Li for some invertible sheaf Li on Y. Since for any invert-

ible sheaf L on Y one has that L(Y)	 ( f∗L)(X), any section b(t) ∈Mφ(t) extends to a

unique section a(t) ∈Lφ(t). Since

f∗(a(t)⊗ a(s))= b(t)⊗ b(s)= b(t+ s)= f∗(a(t+ s))�⇒ a(t)⊗ a(s)= a(t+ s)

for any t, s ∈ T+ and a(0)= 1, it follows that (L,a) ∈Xφ(Y) and f∗(L,a)= (M,b). �
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Corollary 3.51. Let X
f−−→Y be a map of schemes and consider a commutative diagram:

X FE

Y Xφ
f πE

where E is a sequence of elements of T∨
+ . Then if Pic X

f∗−−→ Pic Y is fully faithful (resp. an

equivalence) the dashed lifting is unique (resp. exists). �

Proof. It is enough to consider the 2-commutative diagram:

FE(Y) FE(X)

Xφ(Y) Xφ(X)

f∗

πE πE
f∗

and note that f∗ is fully faithful (resp. an equivalence) in both cases. �

Theorem 3.52. Let X be a locally noetherian and locally factorial scheme, E = (E i)i∈I be

a sequence of distinct smooth extremal rays and Θ be a collection of smooth sequences

with rays in E . Consider the full subcategories

CΘ
X =

{
(L,M, z, δ) ∈FE(X)

∣∣∣∣∣codimXV(zi1) ∩ · · · ∩ V(zis)≥ 2

if �δ ∈Θ s.t. E i1 , . . . , E is ⊆ δ

}
⊆FE(X)

and

DΘ
X =

{
χ ∈Xφ(X)

∣∣∣∣∣∀p∈ X with codimpX ≤ 1

χ|k(p) ∈XΘ
φ

}
⊆Xφ(X).

Then πE induces an equivalence of categories

CΘ
X = π−1

E (DΘ
X )

	−−→DΘ
X . �

Proof. We claim that

CΘ
X = {χ ∈FE(X) | ∃U ⊆ X open subset s.t. codimX X −U ≥ 2, χ|U ∈FΘ

E (U )}.
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⊆ Taking into account the definition of FΘ
E in Lemma 3.42, it is enough to con-

sider

U = X −
⋃

�δ∈Θ s.t. E i1 ,...,E is⊆δ
V(zi1) ∩ · · · ∩ V(zis).

⊇ If p∈ V(zi1) ∩ · · · ∩ V(zis) and codimpX ≤ 1 then p∈U and again by definition of

FΘ
E there exists δ ∈Θ such that E i1 , . . . , E is ⊆ δ.

We also claim that

DΘ
X = {χ ∈Xφ(X) | ∃U ⊆ X open subset s.t. codimX X −U ≥ 2, χ|U ∈XΘ

φ (U )}.

⊇ Such a U contains all the codimension 1 or 0 points of X.

⊆ Let χ ∈DΘ
X and X

g−−→Xφ be the induced map. If ξ is a generic point of X, we

know that f(ξ) ∈ |XΘ
φ | ⊆ |Zφ|. In particular, f(|X|)⊆ |Zφ|. Since both X and Zφ are reduced

g factors through a map X
g−−→Zφ . Since XΘ

φ is an open substack of Zφ , it follows that U =
g−1(XΘ

φ ) is an open subscheme of X, χ|U ∈XΘ
φ (U ) and, by definition of DΘ

X , codimX X −
U ≥ 2.

Taking into account Theorem 3.44, it is clear that CΘ
X = π−1

E (DΘ
X ). We will make

use of the fact that if U ⊆ X is an open subscheme such that codimX X −U ≥ 2 then the

restriction yields an equivalence Pic X 	 Pic U . The map CΘ
X −→DΘ

X is essentially surjec-

tive since, given an object of DΘ
X , the associated map X

g−−→Xφ fits in a 2-commutative

diagram:

U FΘ
E ⊆FE

X Xφ
g

πE

and so lifts to a map X −→FE thanks to Corollary 3.51.

It remains to show that CΘ
X −→DΘ

X is fully faithful. Let χ, χ ′ ∈CΘ
X and U,U ′ be

the open subscheme given in the definition of CΘ
X . Set V =U ∩U ′. Taking into account

Proposition 3.50 and Theorem 3.44, we have

HomFE (X)(χ, χ
′) HomXφ(X)(χ, χ

′)

HomFE (V)(χ|V , χ
′
|V ) HomXφ(V)(χ|V , χ

′
|V )

HomFΘ
E (V)

(χ|V , χ ′|V ) HomXΘ
φ (V)

(χ|V , χ ′|V ).

	 	

	 	

	 �
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4 Galois Covers for a Diagonalizable Group

In this section, we will fix a finite diagonalizable group scheme G over Z and we will call

M=Hom(G,Gm) its character group. So M is a finite abelian group and G =D(M). With

abuse of notation, we will write OU [M]=OU [GU ] and ZM =ZD(M), the main component

of D(M)-Cov. It turns out that in this case D(M)-covers have a nice and more explicit

description.

In the first subsection, we will show that D(M)-Cov	Xφ for an explicit map

T+
φ−−→ZM/〈e0〉 and that this isomorphism preserves the main irreducible components of

both stacks. Moreover, we will study the connection between D(M)-Cov and the equiv-

ariant Hilbert schemes M-Hilbm and prove some results about their geometry.

Then we will introduce an upper semicontinuous map |D(M)-Cov| h−−→N that

yields a stratification by open substacks of D(M)-Cov. We will also see that {h= 0} coin-

cides with the open substack of D(M)-torsors, while {h≤ 1} lies in the smooth locus of

ZM and can be described by a particular set of smooth extremal rays. This will allow

us to describe the D(M)-covers over a locally noetherian and locally factorial scheme X

with (char X, |M|)= 1 whose total space is regular in codimension 1 (which, a posteriori,

is equivalent to the normal condition).

4.1 The stack D(M)-Cov and its main irreducible component ZM

Consider a scheme U and a cover X = Spec A on it. An action of D(M) on it consists of a

decomposition

A=
⊕
m∈M

Am

such that OU ⊆A0 and the multiplication maps Am ⊗An into Am+n. If X/U is a

D(M)-cover there exists an fppf covering {Ui −→U } such that A|Ui 	OUi [M] as D(M)-

comodules. This means that for any m ∈ M we have

∀ i (Am)|Ui 	OUi �⇒Am invertible.

Conversely, any M-graded quasi-coherent algebra A=⊕
m∈M Am with A0 =OU and Am

invertible for any m yields a D(M)-cover Spec A.

So the stack D(M)-Cov can be described as follows. An object of D(M)-Cov(U ) is

given by a collection of invertible sheaves Lm for m ∈ M with maps

ψm,n :Lm ⊗ Ln−→Lm+n
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and an isomorphism OU 	L0 satisfying the following relations:

Commutativity Associativity

Lm ⊗ Ln Ln⊗ Lm Lm ⊗ Ln⊗ Lt Lm ⊗ Ln+t

Lm+n Lm+n⊗ Lt Lm+n+t

Neutral

Element

Lm Lm ⊗OU Lm ⊗ L0 Lm
	

ψm,n

ψm,n+t

	

ψn,m

ψm,0

ψm+n,t

id⊗ψn,t

	

ψm,n⊗id

id

If we assume that Lm =OUvm, that is, that we have sections vm generating Lm,

the maps ψm,n can be thought of as elements of OU and the algebra structure is given by

vmvn=ψm,nvm+n. In this case, we can rewrite the above conditions obtaining

ψm,n=ψn,m, ψm,0 = 1, ψm,nψm+n,t =ψn,tψn+t,m. (4.1)

The functor that associates to a scheme U the functions ψ : M × M−→OU satisfying the

above conditions is clearly representable by the spectrum of the ring

RM =Z[xm,n]/(xm,n− xn,m, xm,0 − 1, xm,nxm+n,t − xn,txn+t,m). (4.2)

In this way, we obtain a Zariski epimorphism Spec RM −→D(M)-Cov that we will prove

to be smooth. We now want to prove that the stack D(M)-Cov is isomorphic to a stack of

the form Xφ .

Definition 4.1. Define K̃+ as the quotient monoid of NM×M by the equivalence relation

generated by

em,n∼ en,m, em,0 ∼ 0, em,n+ em+n,t ∼ en,t + en+t,m.

Also define φM : K̃+ −→ZM/〈e0〉 by φM(em,n)= em + en− em+n. �

Proposition 4.2. RM 	Z[K̃+] and there exists an isomorphism

XφM 	D(M)-Cov (4.3)
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such that Spec Z[K̃+]	 Spec RM −→D(M)-Cov	XφM is the map defined in Proposi-

tion 3.3. In particular,

D(M)-Cov	 [Spec RM/D(Z
M/〈e0〉)].

�

Proof. The required isomorphism sends (L, K̃+
ψ−−→ Sym∗L) ∈XφM to the object of

D(M)-Cov given by invertible sheaves (L′m =L−1
m ) and ψm,n=ψ(em,n). �

We want to prove that the isomorphism (4.3) sends ZφM to ZM (see Definition 2.3)

and BφM to BD(M). We need the following classical result on the structure of a D(M)-

torsor (see [8, Exposé VIII, Proposition 4.1 and 4.6]):

Proposition 4.3. Let M be a finite abelian group and P −→U a D(M)-equivariant map.

Then P is an fppf D(M)-torsor if and only if P ∈D(M)-Cov(U ) and all the multiplication

maps ψm,n are isomorphisms. �

Now consider the exact sequence

0 K ZM/〈e0〉 M 0
em m

Definition 4.4. For m,n∈ M, we define

vm,n= φM(em,n)= em + en− em+n∈ K

and K+ as the submonoid of K generated by the vm,n. We will set xm,n= xvm,n ∈Z[K+] and,

for E ∈ K∨
+, Em,n= E(vm,n). �

Lemma 4.5. The map

K̃+ K
em,n vm,n
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is the associated group of K̃+ and K+ is its associated integral monoid. In particular, we

have a 2-cartesian diagram

Spec Z[K] Spec Z[K+] Spec RM

BD(M) ZM D(M)-Cov �

Proof. Set x=∏
m,n xm,n. Since an object ψ ∈ Spec RM(U ) is a torsor if and only if ψm,n∈

O∗
U for all m,n, it follows that (Spec RM)x =BD(M)×D(M)-Cov Spec RM. We want to define

an inverse to (RM)x −→Z[K]. Consider the algebra SM over RM induced by the atlas map

Spec RM −→D(M)-Cov, that is,

SM =
⊕
m∈M

RMwm with w0 = 1, wmwn= xm,nwm+n

The algebra (SM)x is a D(M)-torsor over (RM)x and so wm ∈ (SM)
∗
x for all m. In particular,

we can define a group homomorphism

ZM/〈e0〉 (SM)
∗
x

em wm

which restricts to a map K −→ (RM)x that sends vm,n to xm,n. In particular, the map

K̃+ −→ K defined in the statement gives the associated group of K̃+ and has as image

exactly K+, which means that K+ is the integral monoid associated to K̃+.

In order to conclude the proof it is enough to apply Remark 3.8 and

Proposition 3.9. �

Corollary 4.6. The isomorphism XφM 	D(M)-Cov (4.3) induces isomorphisms BφM 	
BD(M) and ZφM 	ZM. In particular, ZM is an irreducible component of D(M)-Cov and

BD(M)	 [Spec Z[K]/D(ZM/〈e0〉)] and ZM 	 [Spec Z[K+]/D(ZM/〈e0〉)] �

Note that the induced map φM : K −→ZM/〈e0〉 is just the inclusion and so it is

injective. This means that any result obtained in Section 3 applies naturally in the
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context of D(M)-covers. In particular, now we show how we can describe the objects

of FE , for a sequence of rays in K̃∨
+, in a simpler way.

Proposition 4.7. Let M	∏n
i=1 Z/ liZ be a decomposition and let m1, . . . ,mn be the asso-

ciated generators. Given E = E1, . . . , Er ∈ K∨
+ define F red

E as the stack whose objects over

a scheme X are sequences L=L1, . . . ,Ln,M=M1, . . . ,Mr, z= z1, . . . , zr, μ=μ1, . . . , μn

where L and M are invertible sheaves over X, zi ∈Mi and μ are isomorphisms

μi :L−li
i

	−−→ME(liemi ) =ME1(liemi )

1 ⊗ · · · ⊗MEr(liemi )
r .

Then we have an isomorphism of stacks

FE F red
E

(L,M, z, λ) ((Lmi )i=1,...,n,M, z, (λ(liemi ))i=1,...,n) �

Proof. We want to find σ,V, v1, . . . , vq as in Definition 3.25 such that F red,σ
E =F red

E and

that the map in the statement coincides with the one defined in Proposition 3.27. Set

δi : M−→{0, . . . , li − 1} as the map such that πi(m)= πi(δ
i
mmi), where πi : M−→Z/ liZ is

the projection, and think of it also as a map δi : ZM/〈e0〉 −→Z. Set V =⊕n
i=1 Zemi , vi = emi

and σ : ZM/〈e0〉 −→ V as σ(em)=
∑n

i=1 δ
i
mvi. Clearly, (id− σ)ZM/〈e0〉 ⊆ K and (id− σ)V = 0.

So W= σK. We have

σ(vm,n)=
n∑

i=1

δi
m,nvi ∈

n⊕
i=1

liZvi

since δi
m,n∈ {0, li} for all i. On the other hand, σ(v(li−1)mi ,mi )= livi. Therefore, we have W=⊕n

i=1 liZvi. It is now easy to check that all the definitions agree. �

We now want to express the relation between D(M)-Cov and the equivariant

Hilbert scheme, which can be defined as follows. Given m=m1, . . . ,mr ∈ M, so that D(M)

acts on Ar
Z = Spec Z[x1, . . . , xr] with graduation deg xi =mi, we define M-Hilbm : Schop −→

(sets) as the functor that associates to a scheme Y the set of pairs (X
f−−→Y, j), where

X ∈D(M)-Cov(Y) and j : X −→Ar
Y is an equivariant closed immersion over Y. Such a pair

can also be thought of as a coherent sheaf of algebras A ∈D(M)-Cov(Y) together with a

graded surjective map OY[x1, . . . , xr]−→A. This functor is proved to be a scheme of finite

type in [10].

 at U
niversita degli Studi di Pisa on January 29, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Stacks of Ramified Covers Under Diagonalizable Group Schemes 39

Proposition 4.8. Let m=m1, . . . ,mr ∈ M. The forgetful map ϑm : M-Hilbm −→D(M)-Cov

is a smooth Zariski epimorphism onto the open substack D(M)-Covm of D(M)-Cov of

sheaves of algebras A such that, for all y∈Y, A⊗ k(y) is generated in the degrees

m1, . . . ,mr as a k(y)-algebra. Moreover, M-Hilbm is an open subscheme of a vector bun-

dle over D(M)-Covm. �

Proof. Let A=⊕
m∈M Am ∈D(M)-Cov and consider the map

ηA : Sym(Am1 ⊕ · · · ⊕Amr )−→A

induced by the direct sum of the inclusions Ami −→A. It is easy to check that ηA is

surjective if and only if A ∈D(M)-Covm. Therefore, D(M)-Covm is an open substack of

D(M)-Cov and clearly contains the image of ϑm. Consider now the cartesian diagram

F M-Hilbm

T D(M)-CovmA

ϑm

and let U
φ−−→ T be a map. The objects of F (U ) are pairs composed by a graded surjection

OU [x1, . . . , xr]−→B and an isomorphism B 	 φ∗A. This is equivalent to giving a graded

surjection OU [x1, . . . , xr]−→ φ∗A. In this way, we obtain a map

F
gT−−→

∏
i

HomT (OT ,Ami )	 Spec Sym(
⊕

i

A−1
mi
).

We claim that this is an open immersion. Indeed given (ai)i : U −→∏
i HomT (OT ,Ami ),

the fiber product with F is the locus where the induced graded map OU [x1, . . . , xr]−→
A⊗OU is surjective, that is an open subscheme of U . In particular, F is smooth over

T and so ϑm is smooth too. It is easy to check that it is also a Zariski epimorphism.

Finally, the vector bundle N of the statement is defined over any U −→D(M)-Covm given

by A=⊕
m Am by N|U =

⊕
i A−1

mi
. �

Remark 4.9. If the sequence m contains all elements of M − {0}, then D(M)-Covm =
D(M)-Cov. Therefore, in this case M-Hilbm is an atlas for D(M)-Cov. �
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Remark 4.10. We have cartesian diagrams:

Wm Vm Um Spec RM

M-Hilbm Hm D(M)-Covm D(M)-Cov

open
immersions

open
immersions

D(ZM/〈e0〉)
torsors

vector
bundles

where the comments apply to the horizontal maps. In particular, since BD(M)⊆
D(M)-Covm, we can conclude that ϑ−1

m (ZM) is the main irreducible component of

M-Hilbm. Moreover, the above diagram shows that M-Hilbm and D(M)-Covm, as well

as their main irreducible components, share many properties such as smoothness, con-

nection, integrality, and reducibility. �

We now want to study some geometrical properties of the stack D(M)-Cov and,

therefore, of the equivariant Hilbert schemes.

Remark 4.11. The ring RM can be written as the quotient of the ring Z[xm,n](m,n)∈J ,

where J is {(m,n) ∈ M2 |m,n,m+ n 
= 0} divided by the equivalence relation (m,n)∼
(n,m), by the ideal

I =
(

xm,nxm+n,t − xn,txn+t,m with m,n, t,m+ n,n+ t,m+ n+ t 
= 0 and m 
= t,

x−m,tx−m+t,m − x−m,sx−m+s,m with m, s, t 
= 0 and distinct

)
.

Indeed, the first relations are trivial when one of m,n, and t is zero or m= t, while if

m+ n= 0 yield relations xm,−m = x−m,tx−m+t,m. Using these last relations, we can remove

all the variables xm,n with 0 ∈ {m,n,m+ n}. �

Remark 4.12. There exists a map f : K̃+ −→N such that for any m,n 
= 0 we have

f(em,n)= 1 if m+ n 
= 0, f(em,−m)= 2 otherwise. In particular, f(v)= 0 only if v = 0. More-

over, f induces an N-graduation on both (RM ⊗ A) and Z[K+]⊗ A, where A is a ring, such

that the degree zero part is Aand that the elements xm,n with m+ n 
= 0 are homogeneous

of degree 1. The map f is obtained as the composition K̃+ −→ K ⊆ZM/〈e0〉 h−−→Z, where

h(em)= 1 if m 
= 0. �

One of the open problems in the theory of equivariant Hilbert schemes is

whether those schemes are connected. As said above M-Hilbm is connected if and only

if D(M)-Covm is so. What we can say here is:
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Theorem 4.13. The stack D(M)-Cov is connected with geometrically connected fibers.

If M − {0} ⊆m, then M-Hilbm has the same properties. �

Proof. It is enough to prove that Spec RM ⊗ k is connected for any field k. But RM ⊗ k

has an N-graduation such that (RM ⊗ k)0 = k by Remark 4.12 and it is a general fact that

such an algebra does not contain nontrivial idempotents. �

We now want to discuss the problem of the reducibility of D(M)-Cov.

Definition 4.14. Let S be a scheme. An S-scheme X is said universally reducible over S

if, for any base change S′ −→ S, the scheme X ×S S′ is reducible. A scheme is universally

reducible if it is so over Z. �

Remark 4.15. It is easy to check that X is universally reducible over S if and only if all

the fibers are reducible. �

Lemma 4.16. If there exist m,n, t,a∈ M such that

(1) m,n, and t are distinct and not zero;

(2) a 
= 0,m,n, t,m− n,n−m,n− t, t− n,m− t,2m− t,2n− t,m+ n− t,m+
n− 2t;

(3) 2a 
=m+ n− t;

then Spec RM is universally reducible. �

Proof. Let k be a field and I = (xαi − xβi ) be an ideal of k[x1, . . . , xr]= k[x]. We will say that

α ∈Nr is transformable (with respect to I ) if there exists i such that αi ≤ α or βi ≤ α. Here,

by α ≤ β ∈Nr we mean α j ≤ β j for all j. A direct computation shows that if xα − xβ ∈ I and

α 
= β, then both α and β are transformable.

We will use the above notation for the ideal I defining RM ⊗ k as in Remark 4.11.

In particular, the elements αi, βi ∈NJ associated to the ideal I are of the form eu,v + eu+v,w
with u, v,u+ v,w,u+ v + w 
= 0.

Set μ=∏
m,n xm,n. Since RM ⊗ k−→ k[K+]⊆ k[K]= (RM ⊗ k)μ, there exists N > 0

such that P =Ker(RM ⊗ k−→ k[K+])=AnnμN . Our strategy will be to find an element

of P which is not nilpotent. Since P is a minimal prime, being Spec k[K+] an irreducible

component of Spec RM ⊗ k, it follows that RM ⊗ k is reducible. Now consider α= ea,m−a +
em+n−t−a,t+a−m + et+a−n,n−a, β = em+n−t−a,t+a−n+ ea,n−a + em−a,t+a−m ∈NJ and z= xα − xβ . We
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will show that μz= 0, that is, z∈ P and that z is not nilpotent. First of all note that z is

well defined since for any eu,v in α or β we have u, v 
= 0 and 0 
=u+ v ∈ {m,n, t} thanks

to (1) and (2). Let SM be the universal algebra over RM, that is, SM =⊕
m∈M RMvm with

vmvn= xm,nvm+n and v0 = 1. By construction, we have

(vavm−a)(vm+n−t−avt+a−m)(vt+a−nvn−a)= xαvmvnvt

= (vm+n−t−avt+a−n)(vavn−a)(vm−a,t+a−m)= xβvmvnvt

So xαxm,nxm+n,tvm+n+t = xβxm,nxm+n,tvm+n+t and therefore zμ= 0, that is, z∈ P .

Now, we want to prove that any linear combination γ = aα + bβ ∈NJ with a,b∈N

is not transformable. First remember that each eu,v in γ is such that u+ v ∈ {m,n, t}. If we

have eu,v + eu+v,w ≤ γ , then there must exist ei, j ≤ γ such that i ∈ {m,n, t} or j ∈ {m,n, t}.
Condition (2) is exactly what we need to avoid this situation and can be written as

{a,m− a,m+ n− t− a, t+ a−m, t+ a− n,n− a} ∩ {m,n, t} = ∅.

In particular, if we think of K̃+ as a quotient of NJ , we have aα + bβ = a′α + b′β

in K̃+ if and only if they are equal in NJ . Assume for a moment that α 
= β in NJ . Clearly,

this means that α and β are Z-independent in ZJ . Since any linear combination of α and

β is not transformable, it follows that xα and xβ are algebraically independent over k

in RM ⊗ k and, in particular, that z= xα − xβ cannot be nilpotent. So it remains to prove

that α 
= β in NJ . Note that for any i ∈ {m,n, t}, there exists only one eu,v in α such that

u+ v = i and the same happens for β. So, if α = β and since m,n, and t are distinct, those

terms have to be equal, for instance, ea,m−a= em+n−t−a,t+a−n. But a 
=m+ n− t− a by (3),

while a 
= t+ a− n since t 
=n. Therefore, α 
= β. �

Corollary 4.17. If |M|> 7 and M 
	 (Z/2Z)3 then D(M)-Cov is universally reducible and

the same holds for M-Hilbm provided that m contains all elements of M − {0}. �

Proof. We have to show that RM is universally reducible and so we will apply

Lemma 4.16. If M= C × T , where C is cyclic with |C | ≥ 4 and T 
= 0 we can choose: m

a generator of C , n= 3m, t= 2m and a∈ T − {0}. If M cannot be written as above, there

are four remaining cases. (1) M	Z/8Z: choose m= 2,n= 4, t= 6,a= 1. (2) M cyclic with

|M|> 8 and |M| 
= 10: choose m= 1,n= 2, t= 3,a= 5. (3) M	 (Z/2Z)l with l ≥ 4: choose

m= e1,n= e2, t= e3,a= e4. (4) M	 (Z/3Z)l with l ≥ 2: choose m= e1,n= 2e1, t= e2,a=
m+ t= e1 + e2. �
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Proposition 4.18. D(M)-Cov is smooth if and only if ZM is so. This happens if and only

if M	Z/2Z,Z/3Z,Z/2Z× Z/2Z and in these cases D(M)-Cov=ZM. To be more precise,

RM =Z[xm,n](m,n)∈J , where J is the set defined in Remark 4.11.

In particular, M-Hilbm is smooth and irreducible for any sequence m if M is as

above. Otherwise, if M − {0} ⊆m, M-Hilbm is not smooth. �

Proof. Let k be a field. Note that

D(M)-Cov smooth ⇐⇒ RM smooth�⇒ZM smooth �⇒ k[K+]/k smooth.

We first prove that if k[K+] is smooth then M has to be one of the groups of the

statement. We have K+ 	Nr ⊕ Zs and therefore k[K+] is UFD. We will consider k[K+]

endowed with the N-graduation defined in Remark 4.12. Since any of the xm,n has

degree 1, it is irreducible and so prime. If we have a relation xm,nxm+n,t = xn,txn+t,m with

m,n, t,m+ n,n+ t,m+ n+ t 
= 0 and m 
= t, then xm,n | xn,txn+t,m implies that xm,n= xn,t or

xm,n= xn+t,m, which is impossible thanks to our assumptions. We will prove that if M is

not isomorphic to one of the group in the statement, then such a relation exists. Clearly,

it is enough to find this relation in a subgroup of M. So it is enough to consider the

following cases. (1) M cyclic with |M| ≥ 5: choose m=n= 1, t= 2. (2) M	Z/4Z: choose

m= 1,n= 2, t= 3. (3) M	 (Z/2Z)3: choose m= e1,n= e2, t= e3. (4) M	 (Z/3Z)2: choose

m=n= e1, t= e2.

We now want to prove that when M is as in the statement, then the ideal I of

Remark 4.11 is zero. If we have a relation as in the first row, since m 
= t we have |M| ≥ 3.

If M	Z/3Z then t= 2m and m+ t= 0. If M	 (Z/2Z)2, if m,n, and t are distinct then

m+ n+ t= 0, otherwise m=n and m+ n= 0. If we have a relation as in the second row,

since m, t, and s are distinct, we must have M	 (Z/2Z)2. Therefore, m+ t= s and the

relation becomes trivial. �

Corollary 4.19. D(Z/2Z× Z/2Z)-Cov is isomorphic to the stack of sequences

(Li, ψi)i=1,2,3, where L1,L2, and L3 are invertible sheaves and ψ1 : L2 ⊗ L3 −→L1, ψ2 :

L1 ⊗ L3 −→L2, ψ3 :L1 ⊗ L2 −→L3 are maps. �

Proof. Set M= (Z/2Z)2. Thanks to Proposition 4.18, we know that K̃+ = K+ 	Nve1,e2 ⊕
Nve1,e1+e2 ⊕ Nve2,e1+e2 . So an object of D(M)-Cov is given by invertible sheaves L1 =
Le1 ,L2 =Le2 ,L3 =Le1+e2 and maps ψ1 =ψe2,e1+e2 , ψ2 =ψe1,e1+e2 , ψ3 =ψe1,e2 . �
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Remark 4.20. D(Z/4Z)-Cov and Z/4Z-Hilbm, for any sequence m, are integral and nor-

mal since one can check directly that RZ/4Z =Z[x1,2, x3,3, x2,3, x1,1]/(x1,2x3,3 − x2,3x1,1). I

am not able to prove that D(M)-Cov is irreducible when M is one of Z/5Z,Z/6Z,

Z/7Z, (Z/2Z)3. Anyway the first two cases seem to be integral thanks to a computer pro-

gram, while for the last ones there are some techniques that can be used to study this

problem but they are too complicated to be explained here. �

4.2 The invariant h: |D(M)-Cov| −→N

In this subsection, we investigate the local structure of a D(M)-cover, especially over a

local ring. In particular, we will define an upper semicontinuous map h : |D(M)-Cov| −→
N that measures how much a cover fails to be a torsor: the open locus BD(M)⊆D(M)-Cov

will exactly be the locus {h= 0}.

Notation 4.21. Given a ring A, we will write B ∈ Spec RM(A) meaning that B is an M-

graded A-algebra with a given M-graded basis, usually denoted by {vm}m∈M with v0 = 1,

and a given multiplication ψ such that

B =
⊕
m∈M

Avm, vmvn=ψm,nvm+n.

We will also denote by A∗ the group of invertible elements of A. If f : X −→Y is an affine

map of schemes and q ∈Y, we will use the notation OX,q = f∗OX ⊗OY OY,q. In particu-

lar, X ×Y SpecOY,q 	 SpecOX,q. Note that, although OX,q is written as a localization in a

point, this ring is not local in general. �

Lemma 4.22. Let A be a ring and B ∈ Spec RM(A), with graded basis vm and multiplica-

tion map ψ . Then the set

Hψ = HB/A= {m ∈ M | vm ∈ B∗} = {m ∈ M |ψm,−m ∈ A∗}

is a subgroup of M. Moreover, if m,n∈ M and h∈ Hψ then ψm,n and ψm,n+h differs by an

element of A∗. If H is a subgroup of Hψ then C =⊕
m∈H Avm is an element of BD(H(A)).

Moreover if σ : M/H −→ M gives representatives of M/H in M and we set wm = vσ(m) for

m ∈ M/H we have

B =
⊕

m∈M/H

Cwm ∈ Spec RM/H (C ).
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Finally, if we denote by ψ ′ the induced multiplication on B over C we have Hψ ′ = Hψ/H

and for any m,n∈ M ψ ′
m,n and ψm,n differ by an element of C ∗. �

Proof. From the relations vmv−m =ψm,−m, v|M|−1
m = λv−m, v|M|

m = λψm,−m, where λ ∈ B and

vmvn=ψm,nvm+n we see that vm ∈ B∗ ⇐⇒ ψm,−m ∈ A∗ and that Hψ < M. From (4.1), we get

the relations ψ−h,h=ψh,uψh+u,−h and ψm,nψm+n,h=ψn,hψm,n+h. So if h∈ H, then ψh,u∈ A∗

for any u and ψm,n and ψm,n+h differ by an element of A∗.

Now consider the second part of the statement. From Proposition 4.3, we know

that C is a torsor over A. Since for any m we have vm = (ψh,m/vh)vσ(m̄), where h= σ(m̄)−
m ∈ H we obtain the expression of B as M/H graded C -algebra and that

ψ ′
m,n=ψσ(m),σ (n)(ψh,σ (m)+σ(n)/vh) where h= σ(m+ n)− σ(m)− σ(n).

From the above equation, it is easy to conclude the proof. �

Definition 4.23. Given a ring A and B ∈ Spec RM(A), we continue to use the notation

HB/A introduced in Lemma 4.22 and we will call the algebra C obtained for H = HB/A the

maximal torsor of the extension B/A. If k is a field and E ∈ K∨
+ we will write HE = HB/k,

where B is the algebra induced by the multiplication 0E . In particular,

HE = {m ∈ M | Em,−m = 0}.

Finally, if f : X −→Y ∈D(M)-Cov(Y) and q ∈Y we define H f (q)= HOX,q/OY,q . �

Proposition 4.24. We have a map

|D(M)-Cov| {subgroups of M}
B/k HB/k

H

such that, if Y
u−−→D(M)-Cov is given by X

f−−→Y, then H f =H ◦ |u|. �

Proof. It is enough to note that if A is a local ring, B ∈D(M)-Cov(A) is given by

multiplications ψ and π : A−→ A/mA−→ k is a morphism, where k is a field, then

ψm,−m ∈ A∗ ⇐⇒ π(ψm,−m) 
= 0. �
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Remark 4.25. Let (A,mA) be a local ring and B ∈ Spec RM(A) with M-graded basis

{vm}m∈M. Then HB/A=HB/A(mA). If HB/A= 0 then any vm, with m 
= 0, is nilpotent in B ⊗ k

and therefore B is local with maximal ideal

mB =mA⊕
⊕

m∈M−{0}
Avm

and residue field B/mB = A/mA. In particular, mB/m2
B is M-graded. �

Lemma 4.26. Let A be a local ring and B =⊕
m∈M Avm ∈D(M)-Cov(A) such that HB/A=

0. If m1, . . . ,mr ∈ M then B is generated in degrees m1, . . . ,mr as an A-algebra if and

only if mB = (mA, vm1 , . . . , vmr )B . �

Proof. We can write mB =mA⊕
⊕

m∈M−{0} Avm. Denote v = vm1 , . . . , vmr and π(α)=∑
i αimi for α ∈Nr. The “only if” follows since given l ∈ M − {0} there exists a relation of

the form vl =μvα with μ ∈ A∗ and α 
= 0 and so vl ∈ (mA, vm1 , . . . , vmr )B . For the converse

note that, given l ∈ M − {0}, vl ∈mB = (mA, vm1 , . . . , vmr ) means that we have a relation

vl = λvl ′vmi for some i, λ ∈ A∗ and l ′ = l −mi. Moreover, vl /∈ A[v] implies that vl ′ /∈ A[v] and

l ′ 
= 0. If, by contradiction, we have such an element l we can write vl =μvn1 · · · vns with

ni ∈ M − {0} and s≥ |M|2. In particular, there must exist i such that m=ni appears at

least |M| times in this product. So mA� v|M|
m | vl and vl ∈mAB, which is not the case. �

Assume that we have a cover X
f−−→Y ∈D(M)-Cov(Y). We want to define, for any

m ∈ M a map hf,m = hX/Y,m : Y−→{0,1}. Let q ∈Y and denote by C the “maximal torsor” of

OX,q/OY,q (see Definition 4.23). Also let p∈ f−1(q) and set pC = p∩ C . Taking into account

Remark 4.25, we know that B = (OX,q)p= (OX,q)pC and that B ∈D(M/H f (q))-Cov(C pC )with

HB/C pC
= 0. Moreover, B is local, B/mB = C pC /pC and mB/m2

B is (M/H f (q))-graded. If we

denote by m̄ the image of m ∈ M in M/H f (q) and by (mB/m2
B)t the graded pieces of

mB/m2
B , where t∈ M/H f (q), we can define:

Definition 4.27. With the above notation, we set

hf,m(q)=
{

0 if m ∈H f (q),

dimC pC /pC (mB/m2
B)m̄ otherwise.
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We also set

hf (q)= dimC pC /pC (mB/m2
B)− dimC pC /pC (mB/m2

B)0 =
(∑

m∈M

hf,m(q)

)
/|H f (q)|.

If E ∈ K∨
+ we set hE,m = hf,m,hE = hf ∈N where f is the cover Spec A−→ Spec k and A is

the algebra given by multiplication 0E over some field k. �

The following lemma shows that the value of hf,m(q) does not depend on the

choice of the point p∈ X over q ∈Y.

Lemma 4.28. Let (A,mA) be a local ring, B ∈D(M)-Cov(A) given by the multiplication

ψ and t∈ M. Set also hB/A,t = hB/A,t(mA), for some choice of a prime of B over mA. Then

hB/A,t = 1 if and only if the following conditions are satisfied:

• t /∈ HB/A;

• for all u,n∈ M − HB/A such that u+ n≡ t mod HB/A we have ψu,n /∈ A∗. �

Proof. Let C be the maximal torsor of the extension B/A and p be a maximal prime of

B. We use notation from Lemma 4.22. For any l ∈ M − HB/A, we have a surjective map

k(p)= (mBp/pC p)l̄ −→ (mBp/m2
Bp
)l̄

and so dimk(p)(mBp/m2
Bp
)l̄ ∈ {0,1}, where l̄ is the image of l under the projection M−→

M/HA/B . If we prove the last part of the statement clearly we will also have that hB/A,t is

well defined. If t∈ HB/A then hB/A,t = 0, while if there exist u,n as in the statement such

that ψu,n∈ A∗, then wt̄ ∈ C ∗
pwūwn̄⊆m2

Bp
and again hB/A,t = 0. On the other hand, if hB/A,t = 0

and t /∈ HB/A then wt̄ ∈m2
Bp

and therefore we have an expression

wt̄ = bx+
∑

ū,n̄
=0

bū,n̄wūwn̄ with b,bū,n̄∈ Bp, x∈mC p

The second sum splits as a sum of products of the form cs,ū,n̄wswūwn̄ with s+ ū+ n̄= t̄

and cs,ū,n̄∈ C p. Since C p is local, one of these monomials generates C pwt̄. In this case, if

s+ ū= 0 then ū∈ HBp/C p = 0 which is not the case. So we have an expression

wt̄ = λwūwn̄= λψ ′
ū,n̄wt̄ �⇒ψ ′

ū,n̄∈ C ∗
p,
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where ū, n̄ 
= 0 and ū+ n̄= t̄. Since ψ ′
ū,n̄ and ψu,n differs by an element of C ∗ thanks to

Lemma 4.22, it follows that ψu,n∈ A∗. �

Proposition 4.29. We have maps

|D(M)-Cov| {0,1} |D(M)-Cov| N

B/k hB/k,m B/k hB/k

hm h

such that, if Y
u−−→D(M)-Cov is given by X

f−−→Y, then hf,m = hm ◦ |u| and hf = h ◦ |u|. �

Proof. Taking into account Lemma 4.28 and Proposition 4.24, it is enough to note that if

A is a local ring, B ∈D(M)-Cov(A) is given by multiplications ψ and π : A−→ A/mA−→ k

is a morphism, where k is a field, then ψu,v ∈ A∗ ⇐⇒ π(ψu,v) 
= 0 and HB/A= HB⊗Ak/k. �

Corollary 4.30. Under the hypothesis of Lemma 4.26, {m ∈ M | hB/A,m = 1} is the mini-

mum among the subsets Q of M such that B is generated as an A-algebra in the degrees

Q. In particular, B is generated in hB/A degrees. �

Proposition 4.31. Let (A,mA) be a local ring, B ∈D(M)-Cov(A) and C the maximal tor-

sor of B/A. Then

hB/A(mA)= dimk(p) ΩB/C ⊗B k(p)

for any maximal prime p of B. In particular, if (|HB/A|, char A/mA)= 1 we also have

hB/A(mA)= dimk(p) ΩB/A⊗B k(p) for any maximal prime p of B. �

Proof. If A is any ring and B ∈D(M)-Cov(A) is given by basis {vm}m∈M and multiplica-

tion ψ one sees from the universal property that

ΩB/A= BM/〈e0, vnem + vmen− ψm,nem+n〉.

Now consider B ∈D(M/H)-Cov(C ), where H = HB/A and let p be a maximal prime of B.

Following the notation of Lemma 4.22, we have that wm ∈ p for any m ∈ M/H − {0} and

ψ ′
m,n∈ p ⇐⇒ ψm,n∈mA. So ΩB/C ⊗B k(p) is free on the em for m ∈ M/H − {0} such that

for any u,n∈ M/H − {0}, u+ n=m implies ψu,n /∈ A∗, that are exactly hB/A(mA) thanks to

Lemma 4.28. �
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Corollary 4.32. The function h is upper semicontinuous. �

Proof. Let X
f−−→Y be a D(M)-cover and q ∈Y. Set r = hf (q) and H =H f (q). We can

assume that Y= Spec A and X = Spec B with graded basis {vm}m∈M and multiplication

ψ and that ψm,−m ∈ A∗ for any m ∈ H . Set C = A[vm]m∈H . The ring Cq is the maximal tor-

sor of Bq/Aq and so, if p∈ X is a point over q, we have r = dimk(p) ΩB/C ⊗B k(p). Finally,

let U ⊆ X be an open neighborhood of p such that dimk(p′) ΩB/C ⊗B k(p′)≤ r for any p′ ∈U

and V = f(U ). We want to prove that h≤ r on V . Indeed given q′ = f(p′) ∈ V , if D is the

maximal torsor of Bq′/Aq′ , we have Cq′ ⊆ D ⊆ Bq′ . So

hf (q
′)= dimk(p′) ΩBq′ /D ⊗Bq′ k(p′)≤ dimk(p′) ΩBq′ /Cq′ ⊗Bq′ k(p′)≤ r. �

Remark 4.33. The 0 section RM −→Z, that is, the map that sends any xm,n with m,n 
= 0

to zero, induces a closed immersion

Pic|M|−1 	BT = [Spec Z/T ]⊆ [Spec RM/T ]	D(M)-Cov,

where T =D(ZM/〈e0〉). �

Proposition 4.34. The following results hold:

(1) {h= 0} = |BD(M)|;
(2) {h≥ |M|} = ∅;

(3) {h= |M| − 1} = |BD(ZM/〈e0〉)| (see Remark 4.33). �

Proof. If X
f−−→Y is a D(M)-torsor, clearly hf = 0. So (1) and (2) follow from

Corollary 4.30. Finally, if B ∈D(M)-Cov(k) with multiplication ψ , hB/k= |M| − 1 if and

only if HB/k= 0 and hB/k,m = 1 for all m ∈ M − {0}. This means that ψm,n= 0 for any

m,n 
= 0 by Lemma 4.28. �

In particular, setting Ui = {h≤ i}, we obtain a stratification BD(M)=U0 ⊆U1 ⊆
· · · ⊆U|M|−1 =D(M)-Cov of D(M)-Cov by open substacks.

4.3 The locus h≤ 1

In this subsection, we want to describe D(M)-covers with h≤ 1. This means that “up to

torsors” we have a graded M-algebra generated over the base ring in one degree. We will
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see that {h≤ 1} is a smooth open substack of ZM determined by a special class of explicit

smooth extremal rays of K+. This will allow us to give a description of covers over locally

noetherian and locally factorial scheme X with (char X, |M|)= 1 whose total space is

normal. Such a description, when X is a smooth algebraic variety over an algebraic

closed field k with (char k, |M|)= 1, was already given in [18, Theorem 2.1, Corollary 3.1].

Notation 4.35. Given E ∈ K∨
+ we will write Em,n= E(vm,n). Since K ⊗Q	QM/〈e0〉 we will

also write Em = E(em) ∈Q, so that Em,n= Em + En− Em+n. When we will have to consider

different abelian groups, we will write K+M, KM instead of, respectively, K+, K, in order

to avoid confusion. Given a group homomorphism η : M−→ N, we will denote by η∗ :

KM −→ KN the homomorphism such that η∗(vm,n)= vη(m),η(n) for all m,n∈ M, where KM is

the group associated to K+, �

Remark 4.36. Let A be a ring and consider a sequence E = E1, . . . , Er ∈ K∨
+. An element

of FE(A) coming from the atlas (see Remark 3.13) is given by a pair (z, λ) where z=
z1, . . . , zr ∈ A and λ : K −→ A∗. The image of this object under πE is the algebra whose

multiplication is given by ψm,n= λ−1
m,nz

E1
m,n

1 · · · zE
r
m,n

r . �

Lemma 4.37. Let η : M−→ N be a surjective morphism and E be a sequence in (K+N)
∨.

Then E is a smooth sequence for N if and only if E ◦ η∗ is a smooth sequence for M. �

Proof. We want to apply Lemma 3.38. Therefore, we have to prove that η∗(K+M)= K+N ,

which is clear, and that Ker η∗ = 〈Ker η∗ ∩ K+N〉. Consider the map f : ZM/〈e0〉 −→ZN/〈e0〉
given by f(em)= eη(m) and set H =Ker η. Clearly, f|KM = η∗. It is easy to check that

G = 〈vm,n for m ∈ H〉Z ⊆Ker η∗ ⊆Ker f and that Ker f/Ker η∗ 	 H . So in order to conclude,

it is enough to note that the map H −→Ker f/G sending h to eh is a surjective group

homomorphism since we have relations eh + eh′ − eh+h′ = vh,h′ and em+h − em = eh − vm,h

for m ∈ M and h,h′ ∈ H . �

Proposition 4.38. Let η : M−→Z/ lZ be a surjective homomorphism with l > 1. Then

Eη(vm,n)=
⎧⎨⎩0 if η(m)+ η(n) < l,

1 otherwise

defines a smooth extremal ray for K+. �

 at U
niversita degli Studi di Pisa on January 29, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Stacks of Ramified Covers Under Diagonalizable Group Schemes 51

Proof. Eη ∈ K∨
+ because, if σ : Z/ lZ−→N is the obvious section, Eη is the restriction of

the map ZM/〈e0〉 −→Z sending em to σ(η(m)). In order to conclude the proof, we will

apply Lemma 4.37 and Proposition 3.37. Set N =Z/ lZ. One clearly has Eη = E id ◦ η∗ and

so we can assume M=Z/ lZ and η= id. In this case, one can check that v1,1, v1,2, . . . , v1,l−1

is a Z-base of K such that Eη(v1, j)= 0 if j < l − 1, Eη(v1,l−1)= 1. �

Those particular rays have already been defined in [18, Equation 2.2].

Notation 4.39. If φ : K̃+ −→ZM/〈e0〉 is the usual map we set ZE
M =X E

φ (see

Definition 3.17) for any sequence E of elements of K∨
+. Remember that if E is a smooth

sequence then ZE
M is a smooth open subset of ZM (see Corollary 3.40) and its points have

the description given in Proposition 3.41.

Set ΦM for the union over all d> 1 of the sets of surjective maps M−→Z/dZ. �

Theorem 4.40. Let E = (Eη)η∈ΦM . We have

{h≤ 1} =
⋃
η∈ΦM

ZEη
M .

In particular {h≤ 1} ⊆Zsm
M and πE induces an equivalence of categories

{(L,M, z, λ) ∈FE | V(zη) ∩ V(zμ)=∅ if η 
=μ} = π−1
E ({h≤ 1}) 	−−→ {h≤ 1}. �

Proof. The last part of the statement follows from the first one just applying

Theorem 3.44 with Θ = {(Eη)}η∈ΦM . Let k be an algebraically closed field and B ∈
D(M)-Cov(k) with graded basis {vm}m∈M and multiplication ψ .

⊇. Assume B ∈ZEη
M (k). If B is a torsor we will have hB/k= 0. Otherwise, we can

write ψ = ξ0Eη for some ξ : K −→ k∗. Replacing Spec k by a geometrical point of the max-

imal torsor of B/k, we can assume that M=Z/dZ and η= id. In particular, HB/k= 0 and,

from the definition of E id, we get B 	 k[x]/(xd). So hB/k= dimk mB/m2
B = 1.

⊆. Assume hB/k= 1. Set C for the maximal torsor of B/k (see Definition 4.23),

H = HB/k and l = |M/H |. The equality hB/k= 1 means that there exists a unique r̄ ∈ M/H

(where r ∈ M) such that hB/k,r = 1 and so Cq[vr]= Bq 	 Cq[x]/(xl) for all (maximal) primes

q of C . In particular, B = C [vr]	 C [x]/(xl) and r̄ generates M/H . Let η : M−→ M/H 	Z/ lZ

be the projection. We want to prove that B ∈ZEη
M . Replacing k by a geometrical point

of some fppf extension of k, we can assume C = k[H ], that is, vhvh′ = vh+h′ if h,h′ ∈ H .
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Finally, the elements vhv
i
r for h∈ H and 0≤ i < l define an M-graded basis of B/k whose

associated multiplication is 0Eη . �

Theorem 4.41. Let E = (Eη)η∈ΦM and let X be a locally noetherian and locally factorial

scheme. Consider the full subcategories

C1
X = {(L,M, z, λ) ∈FE(X) | codimXV(zη) ∩ V(zμ)≥ 2 if η 
=μ} ⊆FE(X)

and

D1
X = {Y

f−−→ X ∈D(M)-Cov(X) | hf (p)≤ 1 ∀p∈ X with codimpX ≤ 1} ⊆D(M)-Cov(X).

Then πE induces an equivalence of categories

D1
X = π−1

E (C1
X)

	−−→C1
X. �

Proof. Apply Theorem 3.52 with Θ = {(Eη)}η∈ΦM . �

Theorem 4.42. Let E = (Eη)η∈ΦM and let X be a locally noetherian and locally factorial

scheme without isolated points and (char X, |M|)= 1, that is, 1/|M| ∈OX(X). Consider

the full subcategories

Reg1
X = {Y/X ∈D(M)-Cov(X) |Y regular in codimension 1} ⊆D(M)-Cov(X)

and

R̃eg
1
X =

{
(L,M, z, λ) ∈FE(X)

∣∣∣∣∣∀ E 
= δ ∈ E codimXV(zE) ∩ V(zδ)≥ 2

∀ E ∈ E∀p∈ X(1)vp(zE)≤ 1

}
⊆FE(X).

Then we have an equivalence of categories

R̃eg
1
X = π−1

E (Reg1
X)

	−−→Reg1
X. �

Proof. We will make use of Theorem 4.41. If Y
f−−→ X ∈Reg1

X, p∈Y(1) and q= f(p),

then hf (q)≤ dimk(p) mp/m2
p= 1. So Reg1

X ⊆D1
X. So we only have to check that R̃eg

1
X =

π−1
E (Reg1

X)⊆C1
X. Since X is a disjoint union of positive dimensional, integral connected
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components, we can assume that X = Spec R, where R is a discrete valuation ring. Let

χ ∈C1
X, A/R∈D1

X the associated covers, H = HA/R and C be the maximal torsor of A/R.

We have to prove that χ ∈ R̃eg
1
X if and only if A is regular in codimension 1. Since DR(H)

is etale over R so is also Spec C . It is so easy to check that, replacing R by a localization

of C and M with M/H , we can assume that H = 0. Since χ ∈C1
X, the multiplication of A

over R is of the form ψ =μzrEφ , where μ : K −→ R∗ is an M-torsor, z is a parameter of A,

φ : M−→Z/ lZ is an isomorphism and r = vR(zEφ ). Moreover, vR(zEψ )= 0 if ψ 
= φ. Replac-

ing M by Z/ lZ through φ we can assume φ = id. Finally, since μ induces an (fppf) torsor

which is etale over R, replacing R by an etale neighborhood, we can assume μ= 1. After

these reductions we have A= R[X]/(X|M| − zr) which is regular in codimension 1 if and

only if r = 1. �

Remark 4.43. In the above theorem, one can replace the condition “regular in codimen-

sion 1” in the definition of Reg1
X with “normal” thanks to Serre’s conditions, since all

the fibers involved are Gorenstein. Moreover, note that a locally noetherian and locally

factorial scheme X is a disjoint union of integral connected components. Therefore, an

isolated point is just a connected component which is Spec k, for a field k. We want to

avoid this situation because regularity in codimension 1 for a cover over a field is an

empty condition. �

Remark 4.44. Theorem 4.42 is a rewriting of [18, Theorem 2.1 and Corollary 3.1]

extended to locally noetherian and locally factorial schemes without isolated points,

where an object of FE(X) is called a building data. �

5 The Locus h≤ 2

In this section, we want to give a characterization of the open substack {h≤ 2} ⊆
D(M)-Cov as done in Theorem 4.41 for {h≤ 1}. The general problem we want to solve

can be stated as follows.

Problem 5.1. Find a sequence of smooth extremal rays E for M and a collection Θ of

smooth sequences with rays in E such that (see Notation 4.39)

{h≤ 2} =
⋃
δ∈Θ

Zδ

M
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or, equivalently, such that, for any algebraically closed field k, the algebras A∈
D(M)-Cov(k) with hA/k≤ 2 are exactly the algebras associated to a multiplication

of the form ψ =ω0E where ω : K −→ k∗ is a group homomorphism and E ∈ 〈δ〉N for

some δ ∈Θ. �

For example in the case h≤ 1 the analogous problem is solved taking E = (Eφ)φ∈ΦM

and Θ = {(E) for E ∈ E} (see Theorem 4.40). Once we have found a pair E,Θ as in Prob-

lem 5.1 we can formally apply Theorems 3.44 and 3.52. This is done in Theorems 5.42

and 5.45.

Similarly to what happens in the case h≤ 1, we can restrict our attention to the

case when M is generated by two elements m and n and the first problem to solve is

to describe M-graded algebras A over a field k generated in these degrees m and n (see

Problem 5.9). This is done associating with A an invariant q̄A∈N (see Theorem 5.31)

and this solution also suggests how to proceed for the next problem, that is, find the

sequence E of Problem 5.1.

When M is any finite abelian group, it turns out that the extremal rays E for M

such that hE = 2 correspond to particular sequences of the form χ = (r, α, N, q̄, φ), where

r, α, N, q̄ ∈N and φ is a surjective map from M to a group Mr,α,N generated by two ele-

ments (see Definition 5.6). The sequence of smooth extremal rays “needed” to describe

the substack {h≤ 2} is composed by the “old” rays (Eη)η∈ΦM and by these new rays. Finally,

the smooth sequences in the family Θ of Problem 5.1 will all be given by elements of the

dual basis of particular Z-basis of K (see Lemma 5.34).

In the last subsection, we will see (Theorem 5.55) that the D(M)-covers of

a locally noetherian and locally factorial scheme with no isolated points and with

(char X, |M|)= 1 whose total space is normal crossing in codimension 1 can be described

in the spirit of classification Theorem 4.42 and extending this result.

Notation 5.2. If m ∈ M, we will denote by o(m) the order of m in the group M. �

5.1 Good sequences

In this subsection, we provide some general technical results in order to work with M-

graded algebras over local rings. So we will consider given a local ring D, a sequence m=
m1, . . . ,mr ∈ M and C ∈D(M)-Cov(D) generated in degrees m1, . . . ,mr. Since Pic(D)= 0

for any u∈ M we have Cu	 D. Given u∈ M, we will call vu a generator of Cu and we will
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also use the abbreviation vi = vmi . Moreover, if A= (A1, . . . , Ar) ∈Nr we will also write

vA= vA1
1 · · · vAr

r .

Definition 5.3. A sequence for u∈ M is a sequence A∈Nr such that A1m1 + · · · + Armr =
u. Such a sequence will be called good if the map C A1

m1
⊗ · · · ⊗ C Ar

mr
−→ Cu is surjective, that

is, vA generates Cu. If r = 2, we will talk about pairs instead of sequences. �

Remark 5.4. Any u∈ M admits a good sequence since, otherwise, we will have Cu=
(D[v1, . . . , vr])u⊆mDCu. If A is a good sequence and B ≤ A, then also B is a good

sequence. �

Lemma 5.5. Let A and B be two sequences for some element of M and assume that A

is good. Set E =min(A, B)= (min(A1, B1), . . . ,min(Ar, Br)) and take λ ∈ D. Then

vB = λvA�⇒ vB−E = λvA−E . �

Proof. Clearly, we have vE (vB−E − λvA−E )= 0. On the other hand, since A− E is a good

sequence, there exists μ ∈ D such that vB−E =μvA−E . Since A is a good sequence, substi-

tuting we get vA(μ− λ)= 0�⇒μ= λ. �

5.2 M-graded algebras generated in two degrees

Definition 5.6. Given 0≤ α < N and r > 0, we set

Mr,α,N =Z2/〈(r,−α), (0, N)〉. �

Proposition 5.7. A finite abelian group M with two marked elements m,n∈ M generat-

ing it is canonically isomorphic to (Mr,α,N, e1, e2) where r =min{s> 0 | sm ∈ 〈n〉}, rm= αn

and N = o(n). Moreover, we have: |M| = Nr, o(m)= rN/(α, N) and

m,n 
= 0 and m 
=n ⇐⇒ N > 1 and (r > 1 or α > 1). �

Proof. We have

0−→Z2

(
r 0
−α N

)
−−−−−→Z2 −→ Mr,α,N −→ 0 exact�⇒ |Mr,α,N | =

∣∣∣∣∣det

(
r 0

−α N

)∣∣∣∣∣= rN

 at U
niversita degli Studi di Pisa on January 29, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


56 F. Tonini

and clearly e1 and e2 generate M. Moreover, Mr,α,N/〈e2〉 	Z/rZ and therefore r is the

minimum such that re1 ∈ 〈e2〉. Finally, it is easy to check that N = o(e2). If now M, r, α, and

N are as in the statement, there exists a unique map Mr,α,N −→ M sending e1, e2 to m,n.

This map is an isomorphism since it is clearly surjective and |M| = o(m)o(n)/|〈m〉 ∩ 〈n〉| =
o(n)r = |Mr,α,N |. The last equivalence in the statement is now easy to prove. �

Notation 5.8. In this subsection, we will fix a finite abelian group M generated by two

elements 0 
=m,n∈ M such that m 
=n. Up to isomorphism, this means M= Mr,α,N with

m= e1,n= e2 and with the conditions 0≤ α < N, r > 0, N > 1, (r > 1 or α > 1).

We will write dq the only integer 0<dq ≤ N such that qrm+ dqn= 0, for q ∈Z, or,

equivalently, dq ≡−qα mod (N). �

Problem 5.9. Let k be a field. We want to describe, up to isomorphism, algebras

A∈D(M)-Cov(k) such that A is generated in degrees m,n and HA/k= 0. Thanks to

Corollary 4.30, this is equivalent to asking for an algebra A such that HA/k= 0 and

{l ∈ M | hA/k,l = 1} ⊆ {m,n}.

The solution of this problem is contained in Theorem 5.31. �

In this subsection, we will fix an algebra A as in Problem 5.9, we will consider

given a graded basis {vl}l∈M of A and we will denote by ψ the associated multiplication.

Note that HA/k= 0 means vm, vn /∈ A∗.

Definition 5.10. Define

z=min{h> 0 | ∃i ∈N, λ ∈ k such that vh
m = λvi

n and hm= in},

x=min{h> 0 | ∃i ∈N, μ ∈ k such that vh
n=μvi

m and hn= im}.

Denote by 0≤ y< o(n) and 0≤w< o(m) the elements such that zm= yn, xn=wm, by

λ,μ ∈ k the elements such that vz
m = λvy

n, vx
n=μvwm, with the convention that λ= 0 if vy

n= 0

and μ= 0 if vwm = 0. Finally, set q̄= z/r and define the map of sets

{0,1, . . . , z− 1} {0,1, . . . ,o(n)}
c min{d∈N | vc

mv
d
n = 0}

f
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We will also write q̄A, zA, xA, yA, wA, λA, μA, and fA if necessary. �

We will see that A is uniquely determined by q̄ and λ up to isomorphism.

Lemma 5.11. Given l ∈ M, there exists a unique good pair (a,b) for l with 0≤ a< z.

Moreover, 0≤ b< f(a). �

Proof. Existence. We know that there exists a good pair (a,b) for l and we can

assume that a is minimum. If a≥ z we can write va
mv

b
n= λva−z

m v
b+y
n . Therefore, λ 
= 0 and

(a− z,b+ y) is a good pair for l, contradicting the minimality of a. Finally, va
mv

b
n 
= 0

means b< f(a).

Uniqueness. Let (a,b) and (a′,b′) be two good pairs for l and assume 0≤ a< a′ < z.

So there exists ω ∈ k∗ such that

va
mv

b
n=ωva′

mv
b′
n �⇒ vb

n=ωva′−a
m vb′

n .

If b≥ b′ then a′ − a ≥ z by definition of z, while if b< b′ then vn is invertible. �

Definition 5.12. Given l ∈ M,we will write the associated good pair as (El , δl)with El < z.

We will consider E and δ as maps ZM/〈e0〉 −→Z and, if necessary, we will also write E A

and δA. �

Notation 5.13. Up to isomorphism, we can change the given basis to

vl = vEl
mv

δl
n

so that the multiplication ψ is given by

vavb = vEa+Eb
m vδa+δb

n =ψa,bv
Ea+b
m vδa+b

n =ψa,bva+b. (5.1)

�

Corollary 5.14. f is a decreasing function and

f(0)+ · · · + f(z− 1)= |M|. (5.2)

�
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Proof. If (a,b) is a pair such that 0≤ a< z and 0≤ b< f(a) then va
mv

b
n 
= 0, that is, (a,b)

is a good pair for am+ bn. So

z−1∑
c=0

f(c)= |{(a,b) | 0≤ a< z, 0≤ b< f(a)}| = |M|. �

Remark 5.15. The following pairs are good:

(z− 1)m : (z− 1,0), (x− 1)n: (0, x− 1), zm= yn: (0, y), xn =wm : (w,0)

that is, vz−1
m , vx−1

n , v
y
n, v

w
m 
= 0. In particular, f(0)≥ x, y+ 1 and f(c) > 0 for any c. Indeed

vz−1
m =ωva

mv
b
n�⇒ vz−1−a

m =ωvb
n�⇒ a= z− 1, b= 0,

vz
m =ωva

mv
b
n�⇒ vz−a

m =ωvb
n�⇒ a= 0, b= y,

where (a,b) are good pairs for the given elements and, by symmetry, we get the result. �

Remark 5.16. If λ 
= 0 or μ 
= 0, then x= y, z=w and λμ= 1. Assume for example λ 
= 0.

If y= 0 then vz
m = λ 
= 0 and so vm is invertible. So y > 0 and, since vy

n= λ−1vz
m, we also

have y≥ x. Now

0 
= vz
m = λvy

n= λμvy−x
n vwm.

So μ 
= 0 and (y− x, w) is a good pair. As before w≥ z and therefore

λμvy−x
n vw−z

m = 1�⇒ y= x, w= x and λμ= 1.
�

Lemma 5.17. Let a,b∈ M. We have:

• Assume Ea,b> 0. If δa,b ≤ 0 then Ea,b ≥ z, δa,b ≥−y. Moreover ψa,b 
= 0 ⇐⇒ λ 
=
0, Ea,b = z, δa,b =−y(=−x) and in this case ψa,b = λ.

• Assume Ea,b< 0. Then Ea,b ≥−w, δa,b ≥ x. Moreover ψa,b 
= 0 ⇐⇒ μ 
= 0, Ea,b =
−w(=−z), δa,b = x and in this case ψa,b =μ.

• Assume Ea,b = 0. Then we have δa,b = 0 and ψa,b = 1 or δa,b ≥ o(n) and ψa,b = 0.�
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Proof. Set ψ =ψa,b. We start with the case Ea,b> 0. From (5.1), we get

vEa,b
m vδa+δb

n =ψvδa+b
n .

If δa,b> 0 then v
Ea,b
m v

δa,b
n =ψ and so ψ = 0 since vm /∈ A∗. If δa,b ≤ 0 we instead have vEa,b

m =
ψv

−δa,b
n and so Ea,b ≥ z. If −δa,b< y then (0,−δa,b) is good. So we can write

vEa,b−z
m λvy+δa,b

n =ψ �⇒ψ = 0

since vn is not invertible. If δa,b ≤−y we have

0≤ Ea,b − z< z, 0≤−δa,b − y< f(0), (Ea,b − z)m= (−δa,b − y)n, vEa,b−z
m λ=ψv−δa,b−y

n

and so both (Ea,b − z,0) and (0,−δa,b − y) are good pair for the same element of M. There-

fore, we must have Ea,b = z, δa,b =−y and ψ = λ.

Now assume Ea,b = 0. If δa,b< 0 then v−δa,b
n ψ = 1 which is impossible. So δa,b ≥ 0. If

δa,b = 0 clearly ψ = 1. If δa,b> 0 then vδa,b
n =ψ and so ψ = 0 and δa,b ≥ o(n).

Finally assume Ea,b< 0. From (5.1) we get

vδa+δb
n =ψv−Ea,b

m vδa+b
n .

We must have δa,b> 0 since vm is not invertible. So vδa,b
n =ψv−Ea,b

m and δa,b ≥ x, from which

vδa,b−x
n μvwm =ψv−Ea,b

m .

Note that, since 0≤−Ea,b ≤ Ea+b< z, (−Ea,b,0) is a good pair. If w>−Ea,b then ψ = 0. So

assume w≤−Ea,b. Arguing as above, we must have δa,b = x, Ea,b =−w and ψ =μ. �

Lemma 5.18. Define

A′ = k[s, t]/(sz, sct f(c) for 0≤ c< z).

Then A′ ∈D(M)-Cov(k) with graduation deg s=m, deg t=n and it satisfies the requests

of Problem 5.9, that is, A′ is generated in degrees m,n and HA′/k= 0. Moreover, we have

q̄A′ = q̄A, zA′ = zA, yA′ = yA, E A′ = E A, δA′ = δA, λA′ =μA′ = 0, fA′ = fA. �
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Proof. Clearly, the elements sctd for 0≤ c< z, 0≤d< f(c) generates A′ as a k-space.

Since they are
∑z−1

c=0 f(c)= |M| and they all have different degrees, it is enough to prove

that any of them are non-zero. So let (c′,d′) a pair as always. It is enough to show that

B = k[s, t]/(sc′+1, td′+1)−→ A′/(sc′+1, td′+1) is an isomorphism. But c′ < z implies that sz= 0

in B. If c′ < c then sct f(c) = 0 in B and finally if c′ ≥ c then d′ + 1≤ f(c′)≤ f(c) and so

sct f(c) = 0 in B.

The algebra A′ is clearly generated in degrees m,n and HA′/k= 0 since sz= t f(0) =
0 and z, f(0) > 0. Moreover sz= 0ty implies that z′ = zA′ ≤ z. Assume by contradiction z′ <

z. From 0 
= sz′ = λ′ty′ we know that ty′ 
= 0 so that y′ < f(0). Therefore, (Ez′m, δz′m)= (z′,0)=
(0, y ′) and so z′ = 0, which is a contradiction. Then z′ = z, yA′ = y′ = y. Also sz= 0ty and

ty 
= 0 imply λA′ = 0 and, thanks to Remark 5.16, μA′ = 0. Finally, by construction, we also

have E A′ = E , δA′ = δ and fA′ = f . �

Lemma 5.19. We have

dq̄ = max
1≤q≤q̄

dq. �

Proof. Thanks to Lemma 5.18, we can assume λ= 0 and, therefore, μ= 0. So vx
n= 0,

vx−1
n 
= 0 and vy

n 
= 0 imply y< x= f(0). Let 1≤ q< q̄ and l = qr. We have (El , δl)= (qr,0). If

N − dq < x= f(0) then we will also have (El , δl)= (0, N − dq) and so q= 0, which is not the

case. So N − dq ≥ x> y= N − dq̄ �⇒dq <dq̄. �

Lemma 5.20. Define q̂ as the only integers 0≤ q̂< q̄ such that

dq̂ = min
0≤q<q̄

dq.

If λ= 0 we have dq̂ ≤ x= f(0) and

f(c)=
{

x if 0≤ c< q̂r,

dq̂ if q̂r ≤ c< z.
�

Proof. We first want to prove that f(c)=min(x,dq for 0≤ qr ≤ c). Clearly, we have the

inequality ≤ since vx
n= vqr

m v
dq
n = 0. Set d= f(c) and let (a,b) a good pair for cm+ dn, so

that vc
mv

d
n = 0va

mv
b
n. We cannot have b≥d since otherwise vc

m = 0 implies c≥ z. If a≥ c then

vd
n = 0 and so d= f(c)≥ x. Conversely, if a< c then 0≤ c− a= qr ≤ c< z and 0<d− b=

dq ≤d= f(c).
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We are now ready to prove the expression of f . Note that the pairs (qr,dq − 1),

with 0≤ q< q̄, are all the possible pairs for −n. So there exists a unique 0≤ q̃< q̄ such

that (q̃r,dq̃ − 1) is good. In particular, if 0≤ q 
= q̃< q̄ we have an expression

vqr
m v

dq−1
n = 0vq̃

mv
dq̃−1
n �⇒

⎧⎨⎩q< q̃ �⇒ v
dq−1
n = 0 �⇒ dq ≥ x,

q> q̃ �⇒ dq >dq̃.

Since v
dq̃−1
n 
= 0 we must have dq̂ ≤ x. This shows that q̃= q̂ and the expression of f .

Finally, if q̄> 1 then q̂> 0 and so dq̂ ≤ x= f(0) since f is a decreasing function. If q̄= 1

then q̂= 0 and so N =dq̂ = f(0)≤ x≤ N. �

Definition 5.21. We will continue to use notation from Lemma 5.20 for q̂ and we will

also write q̂A if necessary. �

5.3 The invariant q̄

Lemma 5.22. Let β, N ∈N, with N > 1, and define dβq =dq, for q ∈Z, the only integer 0<

dq ≤ N such that dq ≡ qβ mod N. Set

Ωβ,N = {0< q≤ o(β,Z/NZ)= N/(N, β) |dq′ <dq for any 0< q′ < q},

set qn for the nth element of it and denote by 0≤ q̂< qn the only number such that

dq̂ = min
0≤q<qn

dq.

Then we have relations q̂N + qndq̂ − q̂dqn = N and, if n> 1, qn= qn−1 + q̂, dqn =dqn−1 + dq̂

and dqn−1 + dq > N for q< q̂. �

Proof. First of all note that all is defined also in the extremal case β = 0. In this case,

Ωβ,N = {1}. Assume first n> 1. Set q̃= qn− qn−1 so that dqn =dqn−1 + dq̃ since dqn >dqn−1 .

Assume by contradiction that q̃ 
= q̂. Since q̃< qn we have dq̂ <dq̃. Let also q′ = qn− q̂ and,

as above, we can write dqn =dq′ + dq̂. Now

dqn − dq′ =dq̂ <dq̃ =dqn − dqn−1 �⇒dqn−1 <dq′ .
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Since qn−1 ∈Ωβ,N , we must have q′ > qn−1, which is a contradiction because otherwise,

being q′ < qn, we must have q′ = qn. So q̃= q̂. For the last relation note that, since qn is the

first q> qn−1 such that dq >dqn−1 , then q̂ is the first such that dqn−1 + dq̂ ≤ N.

Now consider the first relation. We need to do induction on all the β. So we will

write dβq and qβn in order to remember that those numbers depend on to β. The induction

statement on 1≤ q< N is: for any 0≤ β < N and for any n such that qβn ≤ q the required

formula holds. The base step is q= 1. In this case, we have n= 1, q1 = 1, q̂= 0, d0 = N

and the formula can be proved directly. For the induction step, we can assume q> 1

and n> 1. We will write q̂βn for the q̂ associated to n and β. First of all note that, by the

relations proved above, we can write

q̂βn N + qβndβ
q̂βn
− q̂βndβ

qβn
= q̂βn N + qβn−1dβ

q̂βn
− q̂βndβ

qβn−1

and so we have to prove that the second member equals N. If q̂βn ≤ qβn−1 then q̂βn−1 = q̂βn and

the formula is true by induction on q − 1≥ qβn−1. So assume q̂βn > qβn−1 and set α= N − β.

Clearly, we will have

o= o(α,Z/NZ)= o(β,Z/NZ) and dβq + dαq = N for any 0< q< o.

Moreover,

dβ
q̂βn
<dβq for any 0< q< qβn �⇒dα

q̂βn
>dαq for any 0< q< q̂βn �⇒∃l s.t. qαl = q̂βn

and

dβ
qβn−1

≥dβq for any 0< q< qβn �⇒dα
qβn−1

≤dαq for any 0≤ q< qαl = q̂βn �⇒ q̂αl = qβn−1.

Using induction on qαl = q̂βn < qβn ≤ q, we can finally write

N = q̂αl N + qαl dαq̂αl − q̂αl dαqαl = qβn−1 N + q̂βndα
qβn−1

− qβn−1dα
q̂βn

= qβn−1 N + q̂βn(N − dβ
qβn−1
)− qβn−1(N − dβ

q̂βn
)= q̂βn N + qβn−1dβ

q̂βn
− q̂βndβ

qβn−1
.

�
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We continue to keep notation from Notation 5.8. With dq we will always mean

dN−α
q as in Lemma 5.22. Lemma 5.19 can be restated as follows:

Proposition 5.23. Let A be an algebra as in Problem 5.9. Then q̄A∈ΩN−α,N . �

So given an algebra A as in Problem 5.9, we can associate to it the number q̄A∈
ΩN−α,N . Conversely, we will see that any q̄ ∈ΩN−α,N admits an algebra Aas in Problem 5.9

such that q̄= q̄A. It turns out that all the objects zA, yA, fA, E A, δA, q̂A and, if λA= 0, xA,

wA associated to A only depend on q̄A. Therefore, in this subsection, given q̄ ∈ΩN−α,N , we

will see how to define such objects independently from an algebra A.

In this subsection, we will consider given an element q̄ ∈ΩN−α,N .

Definition 5.24. Set q̂ for the only integer 0≤ q̂< q̄ such that dq̂ =min0≤q<q̄ dq, q′ = q̄ − q̂,

z= q̄r, y= N − dq̄,

x=
⎧⎨⎩N − dq′ if q̄> 1,

N if q̄= 1,
w=

⎧⎨⎩q′r if q̄> 1,

0 if q̄= 1,
f(c)=

⎧⎨⎩x if 0≤ c< q̂r,

dq̂ if q̂r ≤ c< z.

We will also write q̂q̄,q′q̄, zq̄, xq̄, fq̄, yq̄, and wq̄ if necessary. �

Remark 5.25. Using notation from Lemma 5.22, we have q̄= qn for some n and, if

n > 1, that is, q̄> 1, qn−1 = q′. Note that zm= yn, wm= xn, y< x, w< z. Moreover, from

Lemma 5.22 and from a direct computation if q̄= 1, we obtain zx− yw= |M|. Finally, if

q̄> 1 one has relations q̂r = z− w and dq̂ = x− y. �

Lemma 5.26. We have that:

(1) f is a decreasing function and
∑z−1

c=0 f(c)= |M|;
(2) any element t∈ M can be uniquely written as

t= Am+ Bn with 0≤ A< z,0≤ B < f(A). �

Proof. (1) If q̄= 1 it is enough to note that q̂= 0, d0 = N and Nr = |M|. So assume q̄> 1.

We have x= N − dq′ ≥dq̂ since dq̄ =dq′ + dq̂ and

z−1∑
c=0

f(c)= q̂rx+ (q̄r − q̂r)dq̂ = (z− w)x+ w(x− y)= zx− wy= |M|.
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(2) First of all note that the expressions of the form Am+ Bn with 0≤
A< z, 0≤ B < f(A) are

∑z−1
c=0 f(c)= |M|. So it is enough to prove that they are all

distinct. Assume that we have expressions Am+ Bn= A′m+ B ′n with 0≤ A′ ≤ A< z,

0≤ B < f(A),0≤ B ′ < f(A′).

A′ = B ′ = 0, that is, Am+ Bn= 0. If A= 0 then B = 0 since f(0)= x≤ N. If A> 0,

we can write A= qr for some 0< q< q̄. In particular, q̄> 1 and B =dq < f(A). If q< q̂

then f(A)= x= N − dq′ >dq contradicting Lemma 5.22, while if q≥ q̂ then f(A)=dq̂ ≤dq.

A′ = B = 0, that is, Am= B ′n. If A= 0 then B ′ = 0 as above. If A> 0 we can write

A= qr for some 0< q< q̄. Again q̄> 1. In particular, B ′ = N − dq < f(0)= x= N − dq′ and

so dq′ <dq, while dq′ =max0<q<q̄ dq.

General case. We can write (A− A′)m+ Bn= B ′n and we can reduce the problem

to the previous cases since if B ≥ B ′ then B − B ′ ≤ B < f(A)≤ f(A− A′), while if B < B ′

then B ′ − B ≤ B ′ < f(A′)≤ f(0). �

Definition 5.27. Given l ∈ M we set (El , δl) the unique pair for l such that 0≤ Et < z,0≤
δt < f(Et) and we will consider E, δ as maps ZM/〈e0〉 −→Z. We will also write E q̄ and δq̄ if

necessary. �

Proposition 5.28. Let A be an algebra as in Problem 5.9. Then

zA= zq̄A, yA= yq̄A, q̂A= q̂q̄A, E A= E q̄A, δA= δq̄A, fA= fq̄A

and, if λA= 0, then xA= xq̄A, wA=wq̄A. �

Proof. Set q̄= q̄A. Then zA= q̄r = zq̄ and zAm= yAn= yq̄n implies yA= yq̄. Also q̂A= q̂q̄ by

definition. Taking into account Lemma 5.18 we can now assume λA= 0. We claim that all

the remaining equalities follow from xA= xq̄. Indeed, clearly wA=wq̄. Also by definition

of fq̄ and thanks to Lemma 5.20 we will have fA= fq̄ and therefore E A= E q̄, δA= δq̄, that

conclude the proof.

We now show that xA= xq̄. If q̄= 1 then q̂= 0 and so, from Lemma 5.20, we have

dq̂ = N = xA= x1. If q̄> 1, by definition of fq̄ and thanks to Lemmas 5.26 and 5.20, we can

write

|M| =
zq̄−1∑
c=0

fq̄(c)= rq̂q̄xq̄ + (zq̄ − q̂q̄r)dq̂q̄ =
zA−1∑
c=0

fA(c)= rq̂AxA+ (zA− q̂Ar)dq̂A

and so xA= xq̄. �
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Definition 5.29. Define the M-graded Z[a,b]-algebra

Aq̄ =Z[a,b][s, t]/(sz − aty, tx − bsw, sq̂rtdq̂ − aγb) where γ =
⎧⎨⎩0 if q̄= 1,

1 if q̄> 1

with M-graduation deg s=m, deg t=n. Given a ring homomorphism Z[a,b]−→ C , that

is elements a0,b0 ∈ C , we will also write Aq̄
a0,b0

= Aq̄ ⊗Z[a,b] C . �

Proposition 5.30. Aq̄ ∈D(M)-Cov(Z[a,b]), it is generated in degrees m,n and {vl =
sEl tδl }l∈M is an M-graded basis for it. �

Proof. We have to prove that, for any l ∈ M, (Aq̄)l =Z[a,b]vl and we can check this over

a field k, that is, considering A= Aq̄
a,b with a,b∈ k. We first consider the case a,b∈ k∗, so

that s, t∈ A∗. Let π : Z2 −→ M the map such that π(e1)=m, π(e2)=n. The set T = {(a,b) ∈
Kerπ | satb ∈ k∗} is a subgroup of Kerπ such that (z,−y), (−w, x) ∈ T . Since det

( z −w
−y x

)=
zx− wy= |M| we can conclude that T =Kerπ . Therefore, vl generate (Aq̄)l since for any

c,d∈N we have sctd/vcm+dn∈ k∗ and 0 
= vl ∈ A∗.

Now assume that a= 0. If q̄= 1 then q̂=w= 0, dq̂ = x= N and so A=
k[s, t]/(sz, tN − b) satisfies the requests. If q̄> 1 it is easy to see that vl generates

Al . On the other hand, dimk A= |{(A, B) | 0≤ A< z,0≤ B < x, A≤ q̂r or B ≤dq̂}| = zx− (z−
q̂r)(x− dq̂)= zx− yw= |M|. The case b= 0 is similar. �

Theorem 5.31. Let k be a field. If q̄ ∈ΩN−α,N and λ ∈ k, with λ= 0 if q̄= N/(α, N), then

Aq̄,λ = k[s, t]/(szq̄ − λtyq̄ , txq̄ , sq̂q̄rtdq̂q̄ )

is an algebra as in Problem 5.9 with q̄Aq̄,λ = q̄ and λAq̄,λ = λ. Conversely, if A is an algebra

as in Problem 5.9 then q̄A∈ΩN−α,N , λA∈ k, λA= 0 if q̄A= N/(α, N) and A	 Aq̄A,λA. �

Proof. Consider A= Aq̄,λ, which is just Aq̄
λ,0. Clearly, t /∈ A∗. On the other hand, s /∈ A∗

since y= 0 ⇐⇒ z= o(m) ⇐⇒ q̄= N/(α, N). Therefore, HA/k= 0 and A is an algebra as in

Problem 5.9. Moreover, clearly q̄A≤ q̄. If by contradiction this inequality is strict, we will

have a relation sqr =ωty′ with 0≤ q< q̄. Since sqr = vqrm 
= 0 we will have that ty′ 
= 0 and

y′ < x, a contradiction thanks to Lemma 5.26. In particular, λ= λA.

Now let A be as in Problem 5.9 and set q̄= q̄A, λ= λA. We already know that

q̄ ∈ΩN−α,N (see Proposition 5.23). We claim that the map Aq̄,λ −→ Asending s, t to vm, vn is
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well defined and so an isomorphism. Indeed, we have vz
m = λvy

n by definition and, thanks

to Proposition 5.28, we have vq̂r
m v

dq̂
n = 0 since dq̂ = fA(q̂r) and vx

n= 0 since fA(0)= x. Finally,

if q̄= N/(α, N) then y= yA= 0 and z= o(m), so that λA= vo(m)
m = 0. �

Corollary 5.32. If k is an algebraically closed field then, up to graded isomorphism,

the algebras as in Problem 5.9 are exactly Aq̄,1 if q̄ ∈ΩN−α,N − {N/(α, N)} and Aq̄,0 if q̄ ∈
ΩN−α,N . �

Proof. Clearly the above algebras cannot be isomorphic. Conversely, if λ ∈ k∗ (and q̄<

N/(α, N)) the transformation t−→ y
√
λt with y= yq̄ yields an isomorphism Aq̄,λ 	 Aq̄,1. �

5.4 Smooth extremal rays for h≤ 2

In this subsection, we continue to keep notation from Notation 5.8, that is, M= Mr,α,N

and we will consider given an element q̄ ∈ΩN−α,N .

Remark 5.33. We have z= 1 ⇐⇒ q̄= r = 1 and x= 1 ⇐⇒ q̄= N. Indeed the first rela-

tion is clear, while for the second one note that, by definition of x and since N > 1, we

have x= 1 ⇐⇒ dq′ = N − 1 ⇐⇒ q̄= N/(α, N), (α, N)= 1. �

Lemma 5.34. The vectors of K+

vcm,dn, 0< c< z, 0<d< f(c),

vm,im, 0< i < z− 1,

vn, jn, 0< j < x− 1,

vm,(z−1)m if z> 1,

vn,(x−1)n if x> 1,

(5.3)

form a basis of K. Assume q̄r 
= 1 and q̄ 
= N, that is, z, x > 1, and denote by Λ and Δ

the last two terms of the dual basis of (5.3). Then Λ,Δ ∈ K∨
+ and they form a smooth

sequence. Moreover, Λ= 1/|M|(xE + wδ), Δ= 1/|M|(yE + zδ) and

Λm,−m =Δn,−n= 1, Λn,−n=
⎧⎨⎩0 if q̄= 1,

1 otherwise,
Δm,−m =

⎧⎨⎩0 if q̄= N/(α, N),

1 otherwise. �
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Proof. Note that we cannot have z= x= 1 since otherwise |M| = f(0)= x= 1, that is,

M= 0. The vectors of (5.3) are at most rk K since

z−1∑
c=1

( f(c)− 1)+ z− 2+ x− 2+ 2=
z−1∑
c=0

( f(c)− 1)+ z− 1= |M| − z+ z− 1= |M| − 1= rk K.

If z= 1 then (5.3) is vn,n, . . . , vn,(x−1)n. So x= |M| = N, that is, n generates M, and (5.3) is a

base of K. In the same way, if x= 1, then m generates M and (5.3) is a base of K.

So we can assume that z, x> 1. The functions E and δ define a map ZM/〈e0〉 (E,δ)−−−→
Z2. Denote by K ′ the subgroup of K generated by the vectors in (5.3), except the last

two lines. We claim that (E, δ)|K ′ = 0. This follows by a direct computation just observing

that if we have an expression Am+ Bn as in Lemma 5.26, (2) then (E, δ)(eAm+Bn)= (A, B).

Consider the diagram

σ(e1)=vm,(z−1)m, σ (e2)=vn,(x−1)n

Z2 K/K ′ ZM/〈e0, K ′〉 Z2 ZM/〈e0, K ′〉 M
τ(e1)=em, τ (e2)=en p(el )=l

p

σ

U

(E,δ)

π

τ

We have (E, δ)(vm,(z−1)m)= (z,−y) since y< x = f(0) and (E, δ)(vn,(x−1)n)= (−w, x) since

w< z. So |det U | = zx− yw= |M| and, since π ◦U = 0, U is an isomorphism onto Kerπ .

Moreover, τ−1 = (E, δ) since el ≡ Elem + δlen mod K ′. It follows that σ is an isomorphism

and so (5.3) is a basis of K.

Consider now the second part of the statement. Clearly, Λ,Δ ∈ 〈E, δ〉Q. Therefore,

we have

Λ= aE + bδ,

⎧⎨⎩Λ(vm,(z−1)m)= 1= az− yb

Λ(vn,(x−1)n)= 0= xb− aw
�⇒

⎧⎨⎩a= x/|M|,
b=w/|M|

and the analogous relation for Δ follows in the same way. Now note that, thanks to

Theorem 5.31 and Proposition 5.28, we have that E = E A, δ = δA for an algebra A as in

Problem 5.9 with q̄A= q̄, λA= 0 and sharing the same invariants of q̄. So we can apply

Lemma 5.17. We want to prove that Λ,Δ ∈ K∨
+ so that they form a smooth sequence

by construction. Assume first that Ea,b> 0. Clearly, Λa,b,Δa,b ≥ 0 if δa,b ≥ 0. On the other

hand, if δa,b< 0 we know that Ea,b ≥ z and δa,b ≥−y and so

|M|Λa,b = xEa,b + wδa,b ≥ xz− yw= |M| and |M|Δa,b = yEa,b + zδa,b ≥ yz− zy= 0.
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The other cases follows in the same way. It remains to prove the last relations. Since

−n= q̂rm+ (dq̂ − 1)n, we have En,−n= q̂r and δn,−n=dq̂. Using the relation zx− wy= |M|
the values of Λn,−n,Δn,−n can be checked by a direct computation. Similarly, considering

the relations −m= (q̂r − 1)m+ dq̂n if 1< q̄, −m= (r − 1)m+ (N − α)n if q̄= 1 and α 
= 0,

−m= (r − 1)m if α= 0, we can compute the values of Λm,−m and Δm,−m. �

Proposition 5.35. The multiplication of Aq̄ (see Definition 5.29) with respect to the

basis vl = vEl
mv

δl
n is: aEφ if q̄= N, where φ : M

	−−→Z/|M|Z, φ(m)= 1; bEη if q̄r = 1, where

η : M
	−−→Z/|M|Z, φ(n)= 1; aΛbΔ if q̄r 
= 1, q̄ 
= N, where Λ and Δ are the rays defined in

Lemma 5.34. �

Proof. In the proof of Proposition 5.30, we have seen that if x= 1 (q̄= N), then M= 〈m〉
and Aq̄ =Z[a,b][s]/(s|M| − a), while if z= 1 (q̄r = 1) then M= 〈n〉 and Aq̄ =Z[a,b][t]/(t|M| −
b). So we can assume x, z> 1. Let B the D(M)-cover over Z[a,b] given by multiplication

ψ = aΛbΔ and denote by {ωl}l∈M a graded basis (inducing ψ). By definition of Λ and Δ, we

have ωl =ωEl
mω

δl
n for any l ∈ M and ψm,(z−1)m = a, ψn,(x−1)n= b. Therefore,

ωz
m =ωmω(z−1)m = aωzm = aωyn= aωy

n, ω
x
n=ωnω(x−1)n= bωxn= bωwm = bωwm

and, checking both cases q̄= 1 and q̄> 1, ωq̂r
mω

dq̂
n =ω−nωn= aΛn,.nbΔn,.n = aγb. In particular,

we have an isomorphism Aq̄ −→ B sending vm, vn to ωm, ωn. �

Notation 5.36. From now on M will be any finite abelian group. If φ : M−→ Mr,α,N is a

surjective map, r, α, N satisfy the conditions of Notation 5.8, q̄ ∈ΩN−α,N with q̄r 
= 1, q̄ 
= N

then we set Λr,α,N,q̄,φ =Λ ◦ φ∗,Δr,α,N,q̄,φ =Δ ◦ φ∗, where Λ and Δ are the rays defined in

Lemma 5.34 with respect to r, α, N, q̄. If φ = id we will omit it. �

Definition 5.37. Set

ΣM =

⎧⎪⎪⎨⎪⎪⎩(r, α, N, q̄, φ)

∣∣∣∣∣∣∣∣
0≤ α < N, r > 0, N > 1, (r > 1 or α > 1)

q̄ ∈ΩN−α,N, q̄r 
= 1, q̄α 
≡ 1 mod N

q̄ 
= N/(α, N), φ : M−→ Mr,α,N surjective

⎫⎪⎪⎬⎪⎪⎭
and Δ∗ :ΣM −→{smooth extremal rays of M}. �
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Remark 5.38. Since e2 and e1 generate Mr,α,N , there exist unique r∨, α∨, and N∨ with

an isomorphism (−)∨ : Mr,α,N −→ Mr∨,α∨,N∨ sending e2, e1 to e1, e2. One can check that r∨ =
(α, N), N∨ = rN/(α, N) and α∨ = q̃r, where q̃ is the only integer 0≤ q̃< N/(α, N) such that

q̃α ≡ (α, N) mod N.

If A is an algebra as in Problem 5.9 for Mr,α,N , then, through (−)∨, A can be

thought of as a Mr∨,α∨,N∨-cover, that we will denote by A∨, and A∨ is an algebra as in

Problem 5.9 with respect to Mr∨,α∨,N∨ , with q̄A∨ = xA/(α, N), λA∨ =μA. We can define a

bijection (−)∨ :ΩN−α,N − {N/(N, α)} −→ΩN∨−α∨,N∨ − {N∨/(α∨, N∨)} in the following way.

Given q̄ take an algebra A as in Problem 5.9 for Mr,α,N with q̄A= q̄ and λA 
= 0, which

exists thanks to Theorem 5.31, and set q̄∨ = q̄A∨ . Taking into account Remark 5.16 and

Proposition 5.28, q̄∨ = yq̄/(α, N) since xA= yA= yq̄ and (−)∨ is well defined and bijective

since λA∨ =μA= λ−1
A . Note that the condition q̄α ≡ 1 mod N is equivalent to r∨ = 1 and

q̄∨ = 1.

Finally, if φ : M−→ Mr,α,N is a surjective morphism then we set φ∨ = (−)∨ ◦ φ :

M−→ Mr∨,α∨,N∨ . Note that in any case we have the relation (−)∨∨ = id. In particular, since

1∨ = α/r∨, q̄= α∨/r is the dual of 1 ∈ΩN∨−α∨,N∨ . �

Proposition 5.39. Let r, α, and N be as in Notation 5.8, q̄ ∈ΩN−α,N with q̄r 
= 1, q̄ 
= N and

φ : M−→ Mr,α,N be a surjective map. Set χ = (r, α, N, q̄, φ). Then

(1) q̄= N/(α, N): Δχ = Eξ , ξ : M
φ−−→ Mr,α,N −→ Mr,α,N/〈m〉 	 〈n〉 	Z/(α, N)Z; q̄α ≡

1 mod N: Δχ = Eζ , ζ : M
φ−−→ Mr,α,N = 〈e1〉;

(2) q̄= 1: Λχ = Eω, ω : M
φ−−→ Mr,α,N −→ Mr,α,N/〈n〉 = 〈m〉 	Z/rZ;

wq̄ = 1: Λχ = Eθ , θ : M
φ−−→ Mr,α,N = 〈e2〉;

(3) q̄> 1 and wq̄ 
= 1: Λχ =Δr,α,N,q̄−q̂,φ .

In particular, in the first two cases we have hΛχ = hΔχ = 1. �

Proof. We can assume M= Mr,α,N and φ = id. The algebra associated to 0Λ
χ

and 0Δ
χ

are,

respectively, Cq̄ = k[s, t]/(sz, tx − sw, sq̂rtdq̂ − 0γ ) and Bq̄ = k[s, t]/(sz − ty, tx, sq̂rtdq̂) by Propo-

sition 5.35.

(1) If q̄= N/(α, N), then z= o(m), y= 0, dq̂ = (α, N) and so Bq̄ = k[s, t]/(so(m) −
1, t(α,N)), the algebra associated to 0Eξ . If q̄α≡ 1 mod N then r∨ = (α, N)= 1 and q̄= α∨/r,

that is, q̄∨ = 1. So y= 1 and Bq̄ 	 k[s]/(s|M|), the algebra associated to 0Eγ .

(2) If q̄= 1, then z= r, q̂=w= 0, x=dq̂ = N and so C1 = k[s, t](tn− 1, sr), the alge-

bra associated to 0Eω . If w= 1 then q̄> 1 and so Cq̄ = k[t]/(t|M|), the algebra associated

to 0Eθ .
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(3) If q̄> 1 then HCq̄ = 0 and so Cq̄ is an algebra as in Problem 5.9. An easy com-

putation shows that zCq̄ =w> 1, so that q̄Cq̄ = q̄ − q̂ and λq̄ = 1. Therefore, Λχ =Δr,α,N,q̄−q̂

by Theorem 5.31. �

Proposition 5.40. Σ∨
M =ΣM and we have a bijection

Δ∗ :ΣM/(−)∨ −→ {smooth extremal rays E with hE = 2}. �

Proof. Σ∨
M ⊆ΣM since q̄α 
≡ 1 mod N is equivalent to q̄∨r∨ 
= 1. Now, let E be a smooth

extremal ray such that hE = 2 and A the associated algebra over some field k. We can

assume HA/k= HE = 0. The relation hE = 2 means that there exist 0 
=m,n∈ M, m 
=nsuch

that A is generated in degrees m,n. So M= Mr,α,N as in Notation 5.8 and A is an algebra

as in Problem 5.9. By Theorem 5.31 and Proposition 5.39 we can conclude that there

exist χ ∈ΣM such that E =Δχ .

Now let χ = (r, α, N, q̄, φ) ∈ΣM. We have to prove that hΔχ = 2 and, since Mr,α,N 
= 0,

assume by contradiction that hΔχ = 1. We can assume M= Mr,α,N and φ = id. Note that

hΔχ = 1 means that the associated algebra B is generated in degree m or n. If A is an

algebra as in Problem 5.9, then A is generated in degree n if and only if z= 1, which

means q̄r = 1. So B is generated in degree m, that is, B∨ is generated in degree e2 ∈
Mr∨,α∨,N∨ , which is equivalent to 1= zB∨ = q̄∨r∨ = 1, and, as we have seen, to q̄α≡ 1 mod N.

Now let χ ′ = (r′, α′, N ′, q̄′, φ′) ∈ΣM such that E =Δχ =Δχ ′ . Again we can assume

HE = 0 and take B, B ′ the algebras associated, respectively, to χ, χ ′. By definition of Δ∗,

φ, φ′ are isomorphisms. If g= φ′ ◦ φ−1 : Mr,α,N −→ Mr′,α′,N ′ then we have a graded isomor-

phism p : B −→ B ′ such that p(Bl)= B ′
g(l). Therefore, g({e1, e2})= {e1, e2}, that is, g= id or

g= (−)∨. It is now easy to show that χ ′ = χ or χ ′ = χ∨. �

Notation 5.41. We set ΦM = {φ : M−→Z/ lZ | l > 1, φ surjective}, Θ2
M = {Eφ}φ∈ΦM ∪

{(Λχ,Δχ)}χ∈Σ̄M
, where Σ̄M is the set of sequences (r, α, N, q̄, φ) where r, α, N ∈N satisfy

0≤ α < N, r > 0, r > 1 or α > 1, q̄ ∈ΩN−α,N satisfy q̄r 
= 1, q̄ 
= N and φ : M−→ Mr,α,N is a

surjective map. Finally, set E = (Eφ,Δχ)φ∈ΦM,χ∈ΣM/(−)∨ . �

Theorem 5.42. Let M be a finite abelian group. Then

{h≤ 2} =
⎛⎝ ⋃
φ∈ΦM

ZEφ
M

⎞⎠⋃⎛⎝ ⋃
(Λ,Δ)∈Θ2

M

ZΛ,Δ
M

⎞⎠ .
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In particular {h≤ 2} ⊆Zsm
M . Moreover, πE : FE −→D(M)-Cov induces an equivalence of

categories

{
(L,M, z, λ) ∈FE

∣∣∣∣∣ V(zE1) ∩ · · · ∩ V(zEr ) 
= ∅ iff

r = 1 or (r = 2 and (E1, E2) ∈Θ2
M)

}
= π−1

E (h≤ 2)
	−−→ {h≤ 2}. �

Proof. The expression of {h≤ 2} follows from Theorem 5.31 and Proposition 5.35. Tak-

ing into account Proposition 5.40, the last part instead follows from Theorem 3.44 taking

Θ =Θ2
M. �

In [13], the authors prove that the toric Hilbert schemes associated to a polyno-

mial algebra in two variables are smooth and irreducible. The same result is true more

generally for multigraded Hilbert schemes, as proved later in [14]. Here, we obtain an

alternative proof in the particular case of equivariant Hilbert schemes:

Corollary 5.43. If M is a finite abelian group and m,n∈ M then M-Hilbm,n is smooth

and irreducible. �

Proof. Taking into account the diagram in Remark 4.10 it is enough to note that

D(M)-Covm,n⊆ {h≤ 2} ⊆Zsm
M . �

Proposition 5.44. ΣM =∅ if and only if M	 (Z/2Z)l or M	 (Z/3Z)l . �

Proof. For the only if, note that if φ : M−→Z/ lZ with l > 3 is surjective, then, taking

m= l − 1,n= 1 ∈Z/ lZ, we have Z/ lZ	 M1,l−1,l and (1, l − 1, l,2, φ) ∈ΣM.

For the converse set M= (Z/pZ)l , where p= 2,3 and, by contradiction, assume

that we have (r, α, N, q̄, φ) ∈ΣM. In particular, φ is a surjective map M−→ Mr,α,N . If

e1, e2 ∈ Mr,α,N are Fp-independent then Mr,α,N = 〈e1〉 × 〈e2〉, α = 0, ΩN−α,N = {1} and there-

fore q̄= 1= N/(α, N), which implies that χ /∈ΣM. On the other hand, if M1,α,p	Z/pZ,

the only extremal rays for Z/pZ are E id and, if p= 3, E−id since K+Z/pZ 	Np−1 by

Proposition 4.18. �

Theorem 5.45. Let M be a finite abelian group and X be a locally noetherian and locally

factorial scheme. Consider the full subcategories

C2
X =

{
(L,M, z, δ) ∈FE(X)

∣∣∣∣∣codimXV(zi1) ∩ · · · ∩ V(zis)≥ 2

if �δ ∈Θ2
M s.t. E i1 , . . . E is ⊆ δ

}
⊆FE(X)
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and

D2
X = {Y

f−−→ X ∈D(M)-Cov(X) | hf (p)≤ 2 ∀ p∈ X with codimpX ≤ 1} ⊆D(M)-Cov(X).

Then πE induces an equivalence of categories

C2
X = π−1

E (D2
X)

	−−→D2
X.

�

Proof. Apply Theorem 3.52 with Θ =Θ2
M. �

Remark 5.46. In general {h≤ 3} does not belong to the smooth locus on ZM. For exam-

ple, if M=Z/4Z, D(M)-Cov= {h≤ 3} is integral but not smooth by Proposition 4.18 and

Remark 4.20. �

5.5 Normal crossing in codimension 1

In this subsection, we want to describe, in the spirit of classification Theorem 4.42,

covers of a locally noetherian and locally factorial scheme with no isolated points and

with (char X, |M|)= 1 whose total space is normal crossing in codimension 1.

Definition 5.47. A scheme X is normal crossing in codimension 1 if for any codimen-

sion 1 point p∈ X there exists a local and etale map ÔX,p−→ R, where R is k�x� or

k�s, t�/(st) for some field k and ÔX,p denote the completion of OX,p. �

Remark 5.48. If X is locally of finite type over a perfect field k, one can show

that the above condition is equivalent to having an open subset U ⊆ X such that

codimX X −U ≥ 2 and there exists an etale coverings {Ui −→U } with etale maps Ui −→
Spec k[x1, . . . , xni ]/(x1 · · · xri ) for any i. Anyway, we will not use this property. �

Notation 5.49. In this subsection, we will consider a field k and we will set A=
k�s, t�/(st). Given an element ξ ∈Autkk�x� we will write ξx = ξ(x) so that, if p∈ k�x� then

ξ(p)(x)= p(ξx). We will call I ∈Autkk�s, t� the unique map such that I (s)= t, I (t)= s.

Given B ∈ k∗ we will denote by B the automorphism of k�x� such that Bx = Bx.

Finally, given f ∈ k�x1, . . . , xn� and g∈ k[x1, . . . , xn] the notation f = g+ · · · will

mean f ≡ g mod (x1, . . . , xr)
deg g+1. �
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The first problem to deal with is to describe the action on A of a finite group M

and check when A is a D(M)-cover over AM, assuming to have the |M|-roots of unity in k.

We start collecting some general facts about A.

Proposition 5.50. We have:

(1) A= k⊕ sk�s�⊕ tk�t�.

(2) Given f, g∈ A− {0} then fg= 0 if and only if f ∈ sk�s�, g∈ tk�t� or vice versa.

(3) Any automorphism in AutkA is of the form (ξ, η) or I (ξ, η) where ξ, η ∈
Autkk�x� and (ξ, η)( f(s, t))= f(ξs, ηt).

(4) If ξ ∈Autkk�x� has finite order then ξ = B where B is a root of unity in k. In

particular, if (ξ, η) ∈AutkA has finite order then ξ = B, η= C where B and C

are roots of unity in k.

(5) Let f ∈ k�x�− {0}, B,C roots of unity in k. Then f(Bx)= C f(x) if and only if

C = Br for some r > 0 and, if we choose the minimum r, f ∈ xrk�xo(B)�. �

Proof. (1) is straightforward and (2) follows easily expressing f and g as in (1). For (3)

note that if θ ∈AutkA then θ(s)θ(t)= 0 and apply (2). Finally (4) and (5) can be shown

looking at the coefficients of ξx and of f . �

Lemma 5.51. If M<AutkA is a finite subgroup containing only automorphisms of the

form (ξ, η) then AM 	 A. �

Proof. It is easy to show that AM 	 k�sa, tb�/(satb)	 A, where a= lcm{i | ∃(A, B) ∈
M s.t. ordA= i} and b= lcm{i | ∃(A, B) ∈ M s.t. ordB = i}. �

Since we are interested in covers of regular in codimension 1 schemes (and A is

clearly not regular) we can focus on subgroups M<AutkA containing some I (ξ, η).

Lemma 5.52. Let M<AutkA be a finite abelian group and assume that (char k, |M|)= 1

and that there exists I (ξ, η) ∈ M. Then, up to equivariant automorphisms, we have M=
〈I (id, B)〉 or, if M is not cyclic, M= 〈(C ,C )〉 × 〈I 〉 where B and C are roots of unity and

o(C ) is even. �

Proof. The existence of an element of the form I (ξ, η) in M implies that s and t cannot

be homogeneous in mA/m2
A, that 2 | |M| and therefore that char k 
= 2.
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Applying the exact functor HomM
k (mA/m2

A,−), we get that the surjection mA−→
mA/m2

A has a k-linear and M-equivariant section. This means that there exists x, y∈mA

such that mA= (x, y) and M acts on x and y with characters χ and ζ . In this way, we get

an action of M on k�X,Y� and an equivariant surjective map φ : k�X,Y�−→ A. Moreover,

Kerφ = (h), where h= fg and f, g∈ k�X,Y� are such that φ( f)= s, φ(g)= t. We can write

f = aX + bY + · · · , g= cX + dY + · · · with ad− bc 
= 0. Since ax+ by= s in mA/m2
A and s

is not homogeneous there, we have a,b 
= 0. Similarly, we get c,d 
= 0. In particular, up

to normalize f, g, and x we can assume b= c=d= 1. Now h= aX2 + (a+ 1)XY + Y2 + · · ·
and applying Weierstrass preparation theorem [12, Theorem 9.2], there exists a unique

h̃∈ (h) such that (h̃)= (h) and h̃=ψ0(X)+ ψ1(X)Y + Y2. The uniqueness of h̃ and the M-

invariance of (h) yield the relations m(h̃)= η(m)2h̃,

m(ψ0)=ψ0(χ(m)X)= η(m)2ψ0, m(ψ1)=ψ1(χ(m)X)= η(m)ψ1 (5.4)

for any m ∈ M. Moreover, h̃=μh where μ ∈ k�X,Y�∗ and, since the coefficient of Y2 in

both h and h̃ is 1, we also have μ(0)= 1. In particular, ψ0 = aX2 + · · · and ψ1 = (a+ 1)

X + · · · and so (a+ 1)(χ − ζ )= 0 by (5.4). Since s is not homogeneous in mA/m2
A, χ 
= η and

a=−1. Since char k 
= 2 we can write h̃= (Y + ψ1/2)2 − (ψ2
1/4− ψ0)= y′2 − z′. Note that y′

and z′ are homogeneous thanks to (5.4). Moreover, by Hensel’s lemma, we can write

z′ = X2 + · · · = X2q2 for an homogeneous q ∈ k�x� with q(0)= 1. So x′ = xq is homogeneous

and h̃= y′2 − x′2. This means that we can assume s= x− y, t= x+ y. In particular, χ2 = η2

and M acts on s and t as

m(s)= χ + ζ
2

(m)s+ χ − ζ
2

(m)t, m(t)= χ − ζ
2

(m)s+ χ + ζ
2

(m)t.

Consider the exact sequence

0−→ H −→ M
χ/η−−→{−1,1} −→ 0. (5.5)

If M is cyclic, say M= 〈m〉, we have χ(m)=−η(m) and so m= I (B, B), where B = (χ(m)−
η(m))/2 is a root of unity. Up to normalize s, we can write m= I (id, B).

Now assume that M is not cyclic. The group H acts on s and t with the charac-

ter χ|H = ζ|H and this yields an injective homomorphism χ|H : H −→{roots of unity of k}.
So H = 〈(C ,C )〉 for some root of unity C . The extension (5.5) corresponds to an element

of Ext1(Z/2Z, H)	 H/2H that differs to the sequence 0−→ H −→Z/2o(C )Z−→{−1,1}
−→ 0. So H/2H 	Z/2Z, o(C ) is even and the sequence (5.5) splits. We can conclude that

 at U
niversita degli Studi di Pisa on January 29, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


Stacks of Ramified Covers Under Diagonalizable Group Schemes 75

Table 1.

H m,n, r, α, N, q̄ B E

Z/2Z 1,1,1,1,2,1
k�z�[U ]

(U2 − z2)
2E id

(Z/2Z)2 (1,0), (0,1),2,0,2,1
k�z�[U,V ]

(U2 − z,V2 − z)
Epr1 + Epr2

Z/2lZ× Z/2Z

l > 1
(1,0), (1,1),2,2,2l,1

k�z�[U,V ]

(U2 − V2,V2l − z)
Δ2,2,2l,1

Z/4lZ 1,2l + 1,1,2l + 1,4l,2
k�z�[U,V ]

(U2 − V2,V2l+1 − zU,U V2l−1 − z)
Δ1,2l+1,4l,2

Z/2lZ

l > 1 odd
1, l + 1,2,2, l,1

k�z�[U,V ]

(U2 − V2,Vl − z)
Δ2,2,l,1

M= 〈(C ,C )〉 × 〈m〉, where m= I (D, D) for some root of unity D and o(m)= 2. Normaliz-

ing s we can write m= I (id, D)= I . �

Proposition 5.53. Let M<AutkAbe a finite abelian group such that (char k, |M|)= 1 and

that there exists I (ξ, η) ∈ M. Also assume that k contains the |M|-roots of unity. Then

AM 	 k�z�, A∈D(M)-Cov(AM) and only the following possibilities happen: there exists

a row of Table 1 such that M	 H is generated by m,n, H 	 Mr,α,N , A	 B as M-covers,

where deg U =m,deg V =n and A over AM is given by multiplication zE . Moreover, all

the rays of the form Δ∗ in the table satisfy hΔ∗ = 2. �

Proof. We can reduce the problem to the actions obtained in Lemma 5.52. We first con-

sider the cyclic case, that is, M= 〈I (id, B)〉 	Z/2lZ where l = o(B). There exists E such

that E2 = B. Given 0≤ r < |M| = 2l, we want to compute Ar = {a∈ A | I (id, B)a= Era}. The

condition a= c+ f(s)+ g(t) ∈ Ar holds if and only if a= 0 when r > 0, f(t)= Erg(t) and

g(Bs)= Er f(s). Moreover, f(t)= E−rg(Bt)= E−2r f(Bt)�⇒ f(Bt)= Br f(t). If we denote by

δr the only integer such that 0≤ δr < l and δr ≡ r mod l, we have that, up to constants, Ar

is given by elements of the form Er f(s)+ f(t) for f ∈ Xδr k�Xl�. Call β = sl + tl ∈ A0 = AM

and vr = Ersδr + tδr , v0 = 1. We claim that AM = A0 = k�β� and vr freely generates Ar as an

A0 module. The first equality holds since A0 is a domain and we have relations

∑
n≥1

ansnl +
∑
n≥1

antnl =
∑
n≥1

an(s
l + tl)n=

∑
n≥1

anβ
n
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while the second claim come from the relation

Ersδr (c+ h(s))+ tδr (c+ h(t))= (Ersδr + tδr )(c+ h(s)+ h(t)) for h∈ Xlk�Xl�

and the fact that vr is not a zero divisor in A.

So A∈D(M)-Cov(k�β�) and it is generated by v1 = Es+ t and vl+1 =−Es+ t and

so in degrees 1 and l + 1. If l = 1, so that M	Z/2Z, B = 1, E =−1 and v2
1 = β2. This means

that A	 k�β�[U ]/(U2 − β2) and its multiplication over k�β� is given by β2E id
. This is the

first row. Assume l > 1 and set m= 1,n= l + 1. Note that 0 
=m 
=n and that M	 Mr,α,N

for some r, α, N that we are going to compute.

l odd. We have r = α= 2 and N = l since 〈l + 1〉 = 〈2〉 ⊆Z/2lZ. Consider q̄=
1 ∈ΩN,N−α and the associated numbers are z= r = 2, y= α = 2, q̂= 0,dq̂ = x= N = l,

w= 0. Since vz
1 = vy

l+1 and vl
l+1 = β, we will have A	k�β� A1

λ,μ where λ,μ= 1, β ∈ k�β� (see

Definition 5.29) and therefore the multiplication is βΔ
2,2,l,1

by Proposition 5.35. This is the

fifth row.

l even. We have r = 1, α = l + 1, N = 2l since 〈l + 1〉 =Z/2lZ. Since d1 = l − 1≡−α
and d2 = 2l − 2≡ 2(−α) modulo 2l we can consider q̄= 2 ∈ΩN−α,N . The associated num-

bers are z= y= 2, q̂= 1,dq̂ = l − 1, x= N − (dq̄ − dq̂)= l + 1, w= 1≡ xn= (l + 1)2 mod 2l.

Since vz
1 = vy

l+1, vx
l+1 = βv1 and vq̂r

1 v
dq̂

l+1 = β, we will have A	k�β� A2
λ,μ where λ,μ= 1, β ∈ k�β�

whose multiplication is βΔ1,l+1,2l,2 . This is the fourth row.

Now consider the case M= 〈(C ,C )〉 × 〈I 〉 with o(C )= l even. Set β = sl + tl , v1,0 =
s+ t and v1,1 =−s+ t. Note that vr,i is homogeneous of degree (r, i). Set m= (1,0),n=
(1,1). They are generators of M and so M	 Mr,α,N for some r, α, N. We have N = o(n)= l,

r > 1 since 〈n〉 
= M and so r = 2 since 2m= 2n. If l = 2 we get α = 0 and if l > 2 we get

α = 2. Choose q̄= 1 so that the associated numbers are z= 2, y= α, q̂= 0,dq̂ = x= N =
l, w= 0. As done above, it is easy to see that AM = k�β�. We first consider the case l = 2.

Since v2
1,0 = β and v2

1,1 = β, we get a surjection A1
β,β −→ A which is an isomorphism by

dimension. From the expression of A1
β,β , we can deduce directly that the multiplication

is βEpr1+Epr2 , where pri : (Z/2Z)2 −→Z/2Z are the two projections. This is the second row.

Now assume l > 2. Since v2
1,0 = v2

1,1 and vl
1,1 = β and arguing as above we get

A	k�β� A1
λ,μ where λ,μ= 1, β ∈ k�β� and the multiplication βΔ

2,2,l,1
. This is the third row.

Finally, the last sentence is clear by definition of ΣM and Proposition 5.40. �

Remark 5.54. If X is a locally noetherian integral scheme and there exists a D(M)-

cover Y/X such that Y is normal crossing in codimension 1, then X is defined over a

field. Indeed if charOX(X)= p then Fp⊆OX(X). Otherwise, Z⊆OX(X) and we have to
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prove that any prime number q ∈Z is invertible. We can assume X = Spec R, where R is

a local noetherian domain. If dim R= 0 then R is a field, otherwise, since ht(q)≤ 1, we

can assume dim R= 1 and R complete. By definition of normal crossing in codimension

1, if Y= Spec S and p∈Y is over mR we have a flat and local map R−→ S−→ Sp−→ B,

such that B contains a field k. The prime q is a nonzero divisor in R and therefore in B.

In particular, 0 
= q ∈ k∗ ⊆ B∗ and q ∈ R∗. �

Theorem 5.55. Let M be a finite abelian group, X be a locally noetherian and locally

factorial scheme with no isolated points and (char X, |M|)= 1. Consider the full subcat-

egory

NC 1
X = {Y/X ∈D(M)-Cov(X) |Y is normal crossing in codimension 1} ⊆D(M)-Cov(X).

Then NC 1
X 
= ∅ if and only if each connected component of X is defined over a field. In

this case, define

E =

⎛⎜⎜⎝
Eφ for φ : M−→Z/ lZ surjective with l ≥ 1,

Δ2,2,l,1,φ for φ : M−→ M2,2,l surjective with l ≥ 3,

Δ1,2l+1,4l,2,φ for φ : M−→ M1,2l+1,4l surjective with l ≥ 1

⎞⎟⎟⎠
and C1

NC ,X as the full subcategory of FE(X) of objects (L,M, z, λ) such that:

(1) for all E 
= δ ∈ E , codimV(zE) ∩ V(zδ)≥ 2 except the case where E = Eφ, δ = Eψ

Z/2Z

M (Z/2Z)2

Z/2Z
ψ

pr2

pr1

φ

in which vp(zEφ )= vp(zEψ )= 1 if p∈Y(1) ∩ V(zEφ ) ∩ V(zEψ );

(2) for all E ∈ E and p∈Y(1) vp(zE)≤ 2 and vp(zE)= 2 if and only if E = Eφ where

φ : M−→Z/2Z is surjective.

Then we have an equivalence of categories

C1
NC ,X = π−1

E (NC 1
X)

	−−→ NC 1
X.

�
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Proof. The first claim comes from Remark 5.54. We will make use of Theorem 5.45. If

Y/X ∈ NC 1
Y and p∈Y(1) we have hY/X(p)≤ dimk(p) mp/m2

p≤ 2 since etale maps preserve

tangent spaces and dim mA/m2
A≤ 2. So NC 1

X ⊆D2
X.

Let δ be the sequence of smooth extremal rays used in Theorem 5.45. We know

that π−1
δ (NC 1

X)⊆C2
X. So we have only to prove that π−1

δ (NC 1
X)⊆FE(X)⊆Fδ(X) and that

any element Y ∈ NC 1
X locally, in codimension 1, satisfies the requests of the theorem.

Since X is a disjoint union of positive-dimensional, integral connected components, we

can assume that X = Spec R, where R is a complete discrete valuation ring. Since R con-

tains a field, then R	 k�x�. Let χ ∈ π−1
E (D2

X) and D the associated M-cover over R. Let

C be the maximal torsor of D/R and H = HD/R. Note that, for any maximal ideal q of C

we have Cq 	 k(q)�x� since C/R is etale. Moreover, Spec D ∈ NC 1
X for M if and only if for

any maximal prime p of D Spec Dp∈ NC 1
Spec Cq

for M/H , where q= C ∩ p. In the same way

χ ∈C1
NC ,X for M if and only if, for any maximal prime q of C, χ|Spec Cq ∈C1

NC ,Spec Cq
for M/H .

We can therefore reduce the problem to the case HD/R= 0. We can also assume that k

contains the |M|-roots of unity.

First assume that Spec D ∈ NC 1
Y. If D is regular, the conclusion comes from

Theorem 4.42. So assume D not regular and denote by μ : R= k�x�−→ D the associated

map. We know that D/mA= k. By Cohen’s structure theorem, we can write D = k�y�/I

in such a way that μ|k= idk. By definition, since D is local and complete, there exists

an etale extension D −→ B = L�s, t�/(st). Using the properties of complete rings, B/D

is finite and so B 	 D ⊗k L. Replacing the base R by R⊗k L we can assume that D 	
k�s, t�/(st). The function μ|k : k−→ D extends to a map ν : D −→ D sending s, t to itself.

This map is clearly surjective. Since Spec D contains three points, ν induces a closed

immersion Spec D −→ Spec D which is a bijection. Since D is reduced ν is an isomor-

phism. This shows that we can write D = A= k�s, t�/(st) in such a way that μ|k= idk. So

D(M)	 M acts as a subgroup of AutkA such that AM 	 k�z�. In particular, by Lemma 5.51,

there exists I (ξ, η) ∈ M. Up to equivariant isomorphisms the possibilities allowed

are described in Proposition 5.53 and coincides with the ones of the statement. So

χ ∈C1
NC ,X.

Now assume that χ ∈C1
NC ,X. By definition of πE the multiplication that defines

D over R is something of the form ψ = λzE , where λ is an M-torsor and E is one of

the ray of Table 1. The case E = Eφ comes from Theorem 4.42. Since, in our hypoth-

esis, an M-torsor (in the fppf meaning) is also an etale torsor, replacing the base R

by an etale neighborhood (that maintains the form k�x�), we can assume λ= 1. In this

case, thanks to Lemma 5.52 and Proposition 5.53, we can conclude that A	 k�s, t�/(st) as

required. �
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Corollary 5.56. Let X be a locally noetherian and regular in codimension 1 (normal)

scheme with no isolated points, M be a finite abelian group with (char X, |M|)= 1 and

|M| odd. If Y/X is a D(M)-cover and Y is normal crossing in codimension 1 then Y is

regular in codimension 1 (normal). �

Proof. Since Y/X has Cohen–Macaulay fibers it is enough to prove that Y is regular in

codimension 1 by Serre’s criterion. So we can assume X = Spec R, where R is a discrete

valuation ring, and apply Theorem 4.42 just observing that R̃eg
1
X =C1

NC ,X. �

Remark 5.57. We keep notation from Theorem 5.55 and set δ = (Eη, η : M−→
Z/dZ surjective,d> 1). We have that π−1

δ (NC 1
X)=C1

NC ,X ∩ Fδ, that is, the covers Y/X ∈
NC 1

X writable only with the rays in δ, has the same expression of C1
NC ,X but with object

in Fδ. Therefore, the multiplications that yield a not smooth but with normal crossing

in codimension 1 covers are only Eφ + Eψ , where φ and ψ are morphism as in (1), and

E2φ , where φ : M−→Z/2Z is surjective. This result can also be found in [2, Theorem 1.9].

In particular, if M= (Z/2Z)r, where δ= E thanks to Proposition 5.44, these are the only

possibilities. �
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